Artigo Revisado por pares

Pseudo-Euclidean Alternative Algebras

2016; Taylor & Francis; Volume: 44; Issue: 12 Linguagem: Inglês

10.1080/00927872.2016.1149187

ISSN

1532-4125

Autores

Malika Ait Ben Haddou, Said Boulmane,

Tópico(s)

Finite Group Theory Research

Resumo

In this paper, we transfer the notion of double extension, introduced by Medina and Revoy for quadratic Lie algebras [8 Medina, A., Revoy, Ph. (1985). Algèbre de Lie et produit scalaire invariant. Ann. Sci. Ecole Norm. Sup. (4) 18(3):553–561. [Google Scholar]], and extended by Benayadi and Baklouti for pseudo-euclidean Jordan algebras [1 Baklouti, A., Benayadi, S. (2015). Pseudo-euclidean Jordan algebras. Comm. in. Alg. 43(5):2094–2123.[Taylor & Francis Online], [Web of Science ®] , [Google Scholar], 2 Baklouti, A. (2007). Structures et descriptions inductives des algèbres de Jordan pseudo-euclidiennes. Thèse. Université Paul Verlaine-Metz. [Google Scholar]], to the case of pseudo-euclidean alternative algebras. We show that every pseudo-euclidean alternative algebra, which is irreducible and neither simple nor nilpotent, is a suitable double extension. Moreover, we introduce the notion of generalized double extension of pseudo-euclidean alternative algebras by the one dimensional alternative algebra with zero product. This leads to an inductive classification of nilpotent pseudo-euclidean alternative algebras. A short review of the basics on alternative algebras and their connections to some other algebraic structures is also provided.

Referência(s)
Altmetric
PlumX