Modeling atmospheric tidal propagation across the stratopause
2000; American Geophysical Union; Linguagem: Inglês
10.1029/gm123p0177
ISSN2328-8779
Autores Tópico(s)Coastal and Marine Dynamics
ResumoModeling Atmospheric Tidal Propagation Across the Stratopause M. E. Hagan, M. E. Hagan High Altitude Observatory, National Center for Atmospheric Research, Boulder, ColoradoSearch for more papers by this author M. E. Hagan, M. E. Hagan High Altitude Observatory, National Center for Atmospheric Research, Boulder, ColoradoSearch for more papers by this author Book Editor(s):David E. Siskind, David E. SiskindSearch for more papers by this authorStephen D. Eckermann, Stephen D. EckermannSearch for more papers by this authorMichael E. Summers, Michael E. SummersSearch for more papers by this author First published: 01 January 2000 https://doi.org/10.1029/GM123p0177Citations: 15Book Series:Geophysical Monograph Series AboutPDFPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShareShare a linkShare onEmailFacebookTwitterLinkedInRedditWechat Summary This chapter contains sections titled: Introduction Numerical Tidal Models Scientific Achievements in Tidal Modeling During the 1990s Concluding Remarks References R. A. Akmaev, J. M. Forbes, M. E. Hagan, Simulation of tides with a spectral mesosphere/lower thermosphere model, Geophys. Res. Lett., 23, 2173– 2176, 1996. 10.1029/96GL01977 Web of Science®Google Scholar R. A. Akmaev, V. A. Yudin, D. A. Ortland, SMLTM simulations of the diurnal tide: Comparison with UARS observations, Ann. Geophys., 15, 1187– 1197, 1997. 10.1007/s00585-997-1187-7 Web of Science®Google Scholar T. Aso, Time-dependent numerical modelling of tides in the middle atmosphere, J. Geomag. Geoelectr., 45, 41– 63, 1993. 10.5636/jgg.45.41 Web of Science®Google Scholar T. Aso, S. Ito, S. Kato, Background wind effect on the diurnal tide in the middle atmosphere, J. Geomag. Geoelectr., 39, 297– 305, 1987. 10.5636/jgg.39.297 Web of Science®Google Scholar W. D. Braswell, R. S. Lindzen, Anomalous short-wave absorption and atmospheric tides, Geophys. Res. Lett., 25, 1293– 1296, 1998. 10.1029/98GL01031 Web of Science®Google Scholar M. D. Burrage, et al., Long-term variability in the solar diurnal tide observed by HRDI and simulated by the GSWM, Geophys. Res. Lett., 22, 2641– 2644, 1995. 10.1029/95GL02635 Web of Science®Google Scholar S. Chapman, R. S. Lindzen, Atmospheric Tides, 201, D. Reidel, Dordrecht, Holland, 1970. Google Scholar P. Dao, et al., Lidar observations of t h e temperature profile between 25 and 103 km: Evidence of strong tidal perturbation, Geophys. Res. Lett., 22, 2825– 2828, 1995. 10.1029/95GL02950 Web of Science®Google Scholar J. J. de Grandpre, et al., Canadian middle atmosphere model: Frehmmary results from the chemical transport module, Atmosphere-Ocean, 35, 385– 431, 1997. 10.1080/07055900.1997.9649598 Web of Science®Google Scholar E. M. P. Ekanayake, T. Aso, S. Miyahara, Background wind effect on propagation of nonmigrating diurnal tides in the middle atmosphere, J. Atmos. Solar-Terr. Phys., 59, 401– 429, 1997. 10.1016/S1364-6826(96)00012-0 Web of Science®Google Scholar E. L. Fleming, et al., Zonal mean temperature, pressure, zonal wind and geopotential height as functions of latitude. COSPAR International Reference Atmosphere 1986. Part II: Middle atmosphere models, Adv. Space Res., 10, 11– 62, 1990. 10.1016/0273-1177(90)90386-E Google Scholar J. M. Forbes, Atmospheric tides, 1, Model description and results for t h e solar diurnal component, J. Geophys. Res., 87, 5222– 5240, 1982a. 10.1029/JA087iA07p05222 CASWeb of Science®Google Scholar J. M. Forbes, Atmospheric tides, 2, The solar and lunar semidiurnal components, J. Geophys. Res., 87, 5241– 5252, 1982b. 10.1029/JA087iA07p05241 CASWeb of Science®Google Scholar J. M. Forbes, Middle atmosphere tides, J. Atmos. Terr. Phys., 46, 1049– 1067, 1984. 10.1016/0021-9169(84)90008-4 CASWeb of Science®Google Scholar J. M. Forbes, Tidal and planetary waves, The Upper Mesosphere and Lower Thermosphere: A Review of Experiment and Theory, R. M. Johnson, T. L. Killeen, 67– 87, American Geophysical Union, Washington, DC, 1995. 10.1029/GM087p0067 Google Scholar J. M. Forbes, H. B. Garrett, Theoretical studies of atmospheric tides, Rev. Geophys., 17, 1951, 1979. 10.1029/RG017i008p01951 Web of Science®Google Scholar J. M. Forbes, M. E. Hagan, Diurnal propagating tide in the presence of mean winds and dissipation: A numerical investigation, Planet. Space Sci., 36, 579– 590, 1988. 10.1016/0032-0633(88)90027-X Web of Science®Google Scholar J. M. Forbes, et al., Upper atmospheric tidal oscillations due to latent heat release in t h e tropical troposphere, Ann. Geophys., 15, 1165– 1175, 1997. 10.1007/s00585-997-1165-0 Web of Science®Google Scholar D. C. Fritts, W. Lu, Spectral estimates of gravity wave energy and momentum fluxes, Part II: Parameterization of wave forcing and variability, J. Atmos. Sci., 50, 3695– 3713, 1993. 10.1175/1520-0469(1993)050 2.0.CO;2 Web of Science®Google Scholar M. A. Geller, et al., Modeling the diurnal tide with dissipation derived from UARS/HRDI measurements, Ann. Geophys., 15, 1198– 1204, 1997. 10.1007/s00585-997-1198-4 Web of Science®Google Scholar G. V. Groves, Hough components of water vapor heating, J. Atmos. Terr. Phys., 44, 281– 290, 1982a. 10.1016/0021-9169(82)90033-2 Web of Science®Google Scholar G. V. Groves, Hough components of ozone heating, J. Atmos. Terr. Phys., 44, 111– 121, 1982b. 10.1016/0021-9169(82)90114-3 CASWeb of Science®Google Scholar M. E. Hagan, Comparative effects of migrating solar sources on tidal signatures in t h e middle and upper atmosphere, J. Geophys. Res., 101, 21,213– 21,222, 1996. 10.1029/96JD01374 CASWeb of Science®Google Scholar M. E. Hagan, J. M. Forbes, F. Vial, On modeling migrating solar tides, Geophys. Res. Lett., 22, 893– 896, 1995. 10.1029/95GL00783 Web of Science®Google Scholar M. E. Hagan, J.-L. Chang, S. K. Avery, GSWM estimates of non-migrating tidal effects, J. Geophys. Res., 102, 16,439– 16,452, 1997a. 10.1029/97JD01269 Web of Science®Google Scholar M. E. Hagan, C. McLandress, J. M. Forbes, Diurnal tidal variability in t h e upper mesosphere and lower thermosphere, Ann. Geophys., 15, 1176– 1186, 1997b. 10.1007/s00585-997-1176-x Web of Science®Google Scholar M. E. Hagan, et al., GSWM-98: Results for migrating solar tides, J. Geophys. Res., 104, 6813– 6828, 1999a. 10.1029/1998JA900125 Web of Science®Google Scholar M. E. Hagan, et al., QBO effects on the diurnal tide in the upper atmosphere, Earth, Planets, and Space, 51, 6571– 578, 1999b. 10.1186/BF03353216 Google Scholar A. E. Hedin, Extension of t h e MSIS thermosphere model into the middle and lower atmosphere, J. Geophys. Res., 96, 1159– 1172, 1991. 10.1029/90JA02125 Web of Science®Google Scholar C. O. Hines, Doppler-spread parameterization of gravity wave momentum deposition in t h e middle atmosphere, 1, Basic formulation, J. Atmos. Terr. Phys., 59, 371– 396, 1997a. 10.1016/S1364-6826(96)00079-X CASWeb of Science®Google Scholar C. O. Hines, Doppler-spread parameterization of gravity wave momentum deposition in t h e middle atmosphere, 2, Broad and quasi-monochromatic spectra and implementation, J. Atmos. Terr. Phys., 59, 387– 400, 1997b. 10.1016/S1364-6826(96)00080-6 CASWeb of Science®Google Scholar B. G. Hunt, A simulation of t h e gravity wave characteristics and interactions in a diurnally varying model atmosphere, J. Meteor. Soc. Japan, 68, 145– 161, 1990. 10.2151/jmsj1965.68.2_145 Web of Science®Google Scholar D. R. Jackson, Tides in the extended UGAMP general circulation model, Q. J. R. Meteorol. Soc., 121, 1589– 1611, 1995. Google Scholar E. Kalnay, et al., The NCEP/NCAR 40-year reanalysis project, Bull. Amer. Meteorol. Soc., 77, 437– 471, 1996. 10.1175/1520-0477(1996)077 2.0.CO;2 Web of Science®Google Scholar S. Kato, Dynamics of the upper atmosphere, Center for Academic Publications, Tokyo, Japan, 1980. Google Scholar S. Kato, Non-migrating tides, J. Atmos. Terr. Phys., 51, 673– 682, 1989. 10.1016/0021-9169(89)90065-2 Web of Science®Google Scholar G. M. Keating, M. C. Pitts, C. Chen, Improved reference models for middle atmosphere ozone, Adv. Space Res., 10, (6)37– (6)49, 1990. Google Scholar B. V. Khattatov, et al., Dynamics of t h e mesosphere and lower thermosphere as seen by MF radars and the highresolution Doppler imager/UARS, J. Geophys. Res., 101, 10,393– 10,404, 1996. 10.1029/95JD01704 Web of Science®Google Scholar B. V. Khattatov, et al., Diurnal migrating tide as seen by HRDI/UARS, 2, Monthly mean global zonal and vertical velocities, pressure, temperature, and inferred dissipation, J. Geophys. Res., 102, 4423– 4435, 1997. 10.1029/96JD03654 Web of Science®Google Scholar T. Leblanc, A. Hauchecorne, Recent observations of t he mesospheric temperature inversions, J. Geophys. Res., 102, 19,471– 19,482, 1997. 10.1029/97JD01445 Web of Science®Google Scholar R. S. Lindzen, Turbulence and stress due to gravity wave and tidal breakdown, J. Geophys. Res., 86, 9707– 9714, 1981. 10.1029/JC086iC10p09707 Web of Science®Google Scholar H.-L. Liu, M. E. Hagan, Local heating/cooling of t he mesosphere due to gravity wave and tidal coupling, Geophys. Res. Lett., 25, 2941– 2944, 1998. 10.1029/98GL02153 PubMedWeb of Science®Google Scholar T. Matsuno, A quasi one-dimensional model of the middle atmosphere circulation interacting with internal gravity waves, J. Meteorol. Soc. Japan, 60, 215– 226, 1982. 10.2151/jmsj1965.60.1_215 Web of Science®Google Scholar H. G. Mayr, et al., Seasonal variations of t h e diurnal tide induced by gravity wave filtering, Geophys. Res. Lett., 25, 943– 946, 1998. 10.1029/98GL00637 Web of Science®Google Scholar N. A. McFarlane, The effect of orographically excited gravity wave drag on the general circulation of the lower stratosphere and troposphere, J. Atmos. Sci., 441, 1775– 1800, 1987. Web of Science®Google Scholar C. McLandress, Seasonal variability of the diurnal tide: Results from the Canadian middle atmosphere general circulation model, J. Geophys. Res., 102, 29,749– 29,764, 1997. 10.1029/97JD02645 Web of Science®Google Scholar C. McLandress, On the importance of gravity waves in t he middle atmosphere and their parameterization in general circulation models, J. Atmos. Solar-Terr. Phys., 60, 1357– 1383, 1998. 10.1016/S1364-6826(98)00061-3 Web of Science®Google Scholar C. McLandress, W. E. Ward, Tidal/gravity wave interactions and their influence on the large-scale dynamics of the middle atmosphere: Model results, J. Geophys. Res., 99, 8139– 8155, 1994. 10.1029/94JD00486 Web of Science®Google Scholar C. McLandress, et al., Combined mesosphere/thermosphere winds using WINDII and HRDI data from the Upper Atmosphere Research Satellite, J. Geophys. Res., 101, 10,441– 10,453, 1996. 10.1029/95JD01706 Web of Science®Google Scholar A. S. Medvedev, G. P. Klaassen, Vertical evolution of gravity wave spectra and the parameterization of associated wave drag, J. Geophys. Res., 100, 25,841– 25,853, 1995. 10.1029/95JD02533 Web of Science®Google Scholar J. W. Meriwether, et al., Observed coupling of the mesosphere inversion layer to the thermal tidal structure, Geophys. Res. Lett., 25, 1479– 1482, 1998. 10.1029/98GL00756 Web of Science®Google Scholar C. K. Meyer, Gravity wave interactions with the diurnal propagating tide, J. Geophys. Res., 104, 4223– 4239, 1999. 10.1029/1998JD200089 Web of Science®Google Scholar S. Miyahara, A numerical simulation of the zonal mean circulation of the middle atmosphere including effects of solar diurnal tidal waves and internal gravity waves: Solstice conditions, Dynamics of the Middle Atmosphere, J. R. Holton, T. Matsuno, 271– 287, D. Reidel, Dordrecht, Holland, 1984. 10.1007/978-94-009-6390-0_15 Google Scholar S. Miyahara, J. M. Forbes, Interaction between gravity waves and the diurnal tide in the mesosphere and lower thermosphere, J. Meteor. Soc. Japan, 69, 523– 531, 1991. 10.2151/jmsj1965.69.5_523 Web of Science®Google Scholar S. Miyahara, et al., Mean zonal acceleration and heating of the 70- to 100-km region, J. Geophys. Res., 96, 1225– 1238, 1991. 10.1029/90JA02006 Web of Science®Google Scholar S. Miyahara, Y. Yoshida, Y. Miyoshi, Dynamical coupling between the lower and upper atmosphere by tides and gravity waves, J. Atmos. Terr. Phys., 55, 1039– 1053, 1993. 10.1016/0021-9169(93)90096-H Web of Science®Google Scholar W. A. Norton, J. Thuburn, The two-day wave in a middle atmosphere GCM, Geophys. Res. Lett., 23, 2113– 2116, 1996. 10.1029/96GL01956 Web of Science®Google Scholar W. A. Norton, J. Thuburn, The mesosphere in the extended UGAMP GCM, Gravity Wave Processes and their Parameterization in Global Climate Models, K. Hamilton, 383– 401, Springer-Verlag, New York, 1997. 10.1007/978-3-642-60654-0_26 Google Scholar S. E. Palo, R. G. Roble, M. E. Hagan, TIME-GCM results for the quasi-two-day wave, Geophys. Res. Lett., 25, 3783– 3786, 1998. 10.1029/1998GL900032 Web of Science®Google Scholar S. E. Palo, R. G. Roble, M. E. Hagan, Middle atmosphere effects of the quasi-two-day wave determined from a general circulation model, Earth, Planets, and Space, 51, 629– 647, 1999. 10.1186/BF03353221 Web of Science®Google Scholar R. G. Roble, On the feasibility of developing a global atmospheric model extending from the ground to the exosphere, Geophys. Monogr. Ser., 123, 2000. Google Scholar R. G. Roble, E. C. Ridley, A thermosphere-ionospheremesosphere- electrodynamics general circulation model (TIME-GCM): Equinox solar cycle minimum simulations (30–500 km), Geophys. Res. Lett., 21, 417– 420, 1994. 10.1029/93GL03391 CASWeb of Science®Google Scholar R. G. Roble, G. G. Shepherd, An analysis of WINDII observations of O ( XS) equatorial emission rates using the TIME-GCM, J. Geophys. Res., 102, 2467– 2474, 1997. 10.1029/96JA02930 CASWeb of Science®Google Scholar G. G. Shepherd, et al., Tidal influence on midlatitude airglow: Comparison of satellite and ground-based observations with TIME-GCM predictions, J. Geophys. Res., 103, 14,741– 14,751, 1998. 10.1029/98JA00884 CASWeb of Science®Google Scholar F. Vial, Numerical simulations of atmospheric tides for solstice conditions, J. Geophys. Res., 91, 8955– 8969, 1986. 10.1029/JA091iA08p08955 Web of Science®Google Scholar F. Vial, Tides in the middle atmosphere, J. Atmos. Terr. Phys., 51, 3– 17, 1989. 10.1016/0021-9169(89)90069-X Web of Science®Google Scholar F. Vial, H. Teitelbaum, Some consequences of turbulent dissipative effects on the diurnal thermal tide, Planet. Space Sci., 32, 1559– 1565, 1984. 10.1016/0032-0633(84)90025-4 Web of Science®Google Scholar F. Vial, J. M. Forbes, Recent progress in tidal modeling, J. Atmos. Terr. Phys., 51, 663– 671, 1989. 10.1016/0021-9169(89)90064-0 Web of Science®Google Scholar F. Vial, J. M. Forbes, S. Miyahara, Some transient aspects of tidal propagation, J. Geophys. Res., 96, 1215– 1224, 1991. 10.1029/90JA02181 Web of Science®Google Scholar R. A. Vincent, T. Tsuda, S. Kato, Asymmetries in mesospheric tidal structure, J. Atmos. Terr. Phys., 51, 609– 616, 1989. 10.1016/0021-9169(89)90058-5 Web of Science®Google Scholar H. Volland, Atmospheric Tidal and Planetary Waves, Kluwer Academic Publishers, Norwell, Massachusetts, 1988. 10.1007/978-94-009-2861-9 Google Scholar C. R. Williams, S. K. Avery, Non-migrating diurnal tides forced by deep convective clouds, J. Geophys. Res., 101, 4079– 4091, 1996. 10.1029/95JD03007 Web of Science®Google Scholar A. R. Wood, D. G. Andrews, A spectral model for simulation of tides in the middle atmosphere. I: Formulation, J. Atmos. Solar-Terr. Phys., 59, 31– 51, 1997a. 10.1016/S1364-6826(96)00186-1 PubMedWeb of Science®Google Scholar A. R. Wood, D. G. Andrews, A spectral model for simulation of tides in the middle atmosphere. II: Results for the diurnal tide, J. Atmos. Solar-Terr. Phys., 59, 53– 77, 1997b. 10.1016/1364-6826(95)00187-5 Web of Science®Google Scholar A. R. Wood, D. G. Andrews, A spectral model for simulation of tides in the middle atmosphere. III: Results for the semidiurnal tide, J. Atmos. Solar-Terr. Phys., 59, 79– 97, 1997c. 10.1016/1364-6826(95)00188-3 Web of Science®Google Scholar D.-H. Wu, S. Miyahara, Y. Miyoshi, A non-linear simulation of the thermal diurnal tide, J. Atmos. Terr. Phys., 51, 1017– 1030, 1989. 10.1016/0021-9169(89)90017-2 Web of Science®Google Scholar D. L. Wu, et al., Equatorial diurnal variations observed in UARS Microwave Limb Sounder temperature during 1991–1994 and simulated by the Canadian Middle Atmosphere Model, J. Geophys. Res., 103, 8909– 8917, 1998. 10.1029/98JD00530 Web of Science®Google Scholar J.-H. Yee, et al., Global simulations and observations of O(1S) , O2(1S), and OH mesospheric nightglow emissions, J. Geophys. Res., 102, 19,949– 19,968, 1997. 10.1029/96JA01833 CASWeb of Science®Google Scholar V. A. Yudin, M. A. Geller, and L. Wang, Interannual variability of diurnal tide in the low-latitude mesosphere and lower thermosphere during equinoxes: Mechanistic model interpretation of the 1992–96 HRDI measurements, Geophys. Monogr. Ser., 123, 2000. Google Scholar V. A. Yudin, et al., Thermal tides and studies to tune the mechanistic tidal model using UARS observations, Ann. Geophys., 15, 1205– 1220, 1997. 10.1007/s00585-997-1205-9 Web of Science®Google Scholar V. A. Yudin, et al., TMTM simulations of tides: Comparisons with UARS observations, Geophys. Res. Lett., 25, 221– 224, 1998. 10.1029/97GL03584 Web of Science®Google Scholar X. Zhu, et al., On the numerical modeling of middle atmospheric tides, Q. J. R. Meteorol. Soc., 125, 1825– 1857, 1999. 10.1002/qj.49712555717 Web of Science®Google Scholar Citing Literature Atmospheric Science Across the Stratopause, Volume 123 ReferencesRelatedInformation
Referência(s)