Modelling of austenite stability in low-alloy triple-phase steels

1996; Wiley; Volume: 67; Issue: 11 Linguagem: Alemão

10.1002/srin.199605529

ISSN

0177-4832

Autores

Gregory N. Haidemenopoulos, Apostolos N. Vasilakos,

Tópico(s)

Hydrogen embrittlement and corrosion behaviors in metals

Resumo

Steel ResearchVolume 67, Issue 11 p. 513-519 Materials technology Modelling of austenite stability in low-alloy triple-phase steels Assistant Professor Dr.-Ing. Gregory N. Haidemenopoulos, Assistant Professor Dr.-Ing. Gregory N. Haidemenopoulos Department of Mechanical and Industrial EngineeringSearch for more papers by this authorDipl.-Ing. Apostolos N. Vasilakos, Dipl.-Ing. Apostolos N. Vasilakos University of Thessaly, Volos, GreeceSearch for more papers by this author Assistant Professor Dr.-Ing. Gregory N. Haidemenopoulos, Assistant Professor Dr.-Ing. Gregory N. Haidemenopoulos Department of Mechanical and Industrial EngineeringSearch for more papers by this authorDipl.-Ing. Apostolos N. Vasilakos, Dipl.-Ing. Apostolos N. Vasilakos University of Thessaly, Volos, GreeceSearch for more papers by this author First published: November 1996 https://doi.org/10.1002/srin.199605529Citations: 53AboutPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShare Give accessShare full text accessShare full-text accessPlease review our Terms and Conditions of Use and check box below to share full-text version of article.I have read and accept the Wiley Online Library Terms and Conditions of UseShareable LinkUse the link below to share a full-text version of this article with your friends and colleagues. Learn more.Copy URL Share a linkShare onFacebookTwitterLinkedInRedditWechat Abstracten A model for the stability of dispersed austenite in low alloy triple-phase steels has been developed. The model was based on the dislocation dissociation model for classical heterogeneous martensitic nucleation by considering stress effects on the nucleation site potency distribution. The driving force for martensitic transformation has been calculated with the aid of computational thermodynamics. The model allows for the effects of chemical composition of austenite, mean austenite particle size, yield strength of the steel and stress state on austenite stability. Chemical enrichment in C and Mn, as well as size refinement of the austenite particles lead to stabilization. On the contrary, the increase in the yield strength of the steel and triaxiality of the stress state lead to destabilization. The model can be used to determine the microstructural characteristics of the austenite dispersion, i.e. chemical composition and size, for optimum transformation plasticity interactions at the particular stress state of interest and can then be useful in the design of low-alloy triple-phase steels. Abstractde Für die Stabilität des ausgeschiedenen Austenits in niedriglegierten Dreiphasenstählen wurde ein Modell entwickelt. Es basiert auf dem Modell der Versetzungsaufspaltung für die klassische heterogene Martensitkeimbildung unter Berücksichtigung des Spannungseinflusses auf die Keimstellenverteilung. Die treibende Kraft für die Martensitumwandlung wurde thermodynamisch berechnet. Das Modell berücksichtigt den Einfluß der chemischen Zusammensetzung des Austenits, der Austenitpartikelgröße, der Streckgrenze und des Spannungszustands auf die Austenitstabilität. Die Anreicherung an C und Mn und eine Austenitkornfeinung wirken stabilisierend. Im Gegensatz dazu führen der Streckgrenzenanstieg und der dreiachsige Spannungszustand zur einer Destabilisierung. Das Modell eignet sich zur Beschreibung der Gefügecharakteristika von Austenitauscheidungen -chemische Zusammensetzung und Teilchengröße-, die die für den jeweiligen Spannungszustand optimale Umwandlungsplastizität bewirken. Somit kann es hilfreich bei der Entwicklung von niedriglegierten Dreiphasenstählen sein. Citing Literature Volume67, Issue11November 1996Pages 513-519 RelatedInformation

Referência(s)
Altmetric
PlumX