Construction of Covalent Organic Nanotubes by Light-Induced Cross-Linking of Diacetylene-Based Helical Polymers
2016; American Chemical Society; Volume: 138; Issue: 34 Linguagem: Inglês
10.1021/jacs.6b05582
ISSN1943-2984
AutoresKaho Maeda, Liu Hong, Taishi Nishihara, Yusuke Nakanishi, Yuhei Miyauchi, Ryo Kitaura, Naoki Ousaka, Eiji Yashima, Hideto Ito, Kenichiro Itami,
Tópico(s)Supramolecular Self-Assembly in Materials
ResumoOrganic nanotubes (ONTs) are tubular nanostructures composed of small molecules or macromolecules that have found various applications including ion sensor/channels, gas absorption, and photovoltaics. While most ONTs are constructed by self-assembly processes based on weak noncovalent interactions, this unique property gives rise to the inherent instability of their tubular structures. Herein, we report a simple "helix-to-tube" strategy to construct robust, covalent ONTs from easily accessible poly(m-phenylene diethynylene)s (poly-PDEs) possessing chiral amide side chains that can adopt a helical conformation through hydrogen-bonding interactions. The helically folded poly-PDEs subsequently undergo light-induced cross-linking at longitudinally aligned 1,3-butadiyne moieties across the whole helix to form covalent tubes (ONTs) both in solution and solid phases. The structures of poly-PDEs and covalent ONTs were characterized by spectroscopic analyses, diffraction analysis, and microscopic analyses. We envisage that this simple yet powerful "helix-to-tube" strategy will generate a range of ONT-based materials by introducing functional moieties into a monomer.
Referência(s)