Artigo Acesso aberto Revisado por pares

The Importance of Vibronic Coupling for Efficient Reverse Intersystem Crossing in Thermally Activated Delayed Fluorescence Molecules

2016; Wiley; Volume: 17; Issue: 19 Linguagem: Inglês

10.1002/cphc.201600662

ISSN

1439-7641

Autores

Jamie Gibson, Andrew P. Monkman, Thomas J. Penfold,

Tópico(s)

Molecular Junctions and Nanostructures

Resumo

Abstract Factors influencing the rate of reverse intersystem crossing ( k rISC ) in thermally activated delayed fluorescence (TADF) emitters are critical for improving the efficiency and performance of third‐generation heavy‐metal‐free organic light‐emitting diodes (OLEDs). However, present understanding of the TADF mechanism does not extend far beyond a thermal equilibrium between the lowest singlet and triplet states and consequently research has focused almost exclusively on the energy gap between these two states. Herein, we use a model spin‐vibronic Hamiltonian to reveal the crucial role of non‐Born‐Oppenheimer effects in determining k rISC . We demonstrate that vibronic (nonadiabatic) coupling between the lowest local excitation triplet ( 3 LE) and lowest charge transfer triplet ( 3 CT) opens the possibility for significant second‐order coupling effects and increases k rISC by about four orders of magnitude. Crucially, these simulations reveal the dynamical mechanism for highly efficient TADF and opens design routes that go beyond the Born‐Oppenheimer approximation for the future development of high‐performing systems.

Referência(s)