Capítulo de livro

Microbial Adhesion and Degradation of Plant Cell Walls

2013; Linguagem: Inglês

10.2134/1993.foragecellwall.c16

ISSN

2691-2341

Autores

Alice N. Pell, P. Schofield,

Tópico(s)

Polysaccharides and Plant Cell Walls

Resumo

Chapter 16 Microbial Adhesion and Degradation of Plant Cell Walls Alice N. Pell, Alice N. Pell Cornell University, Ithaca, New YorkSearch for more papers by this authorPeter Schofield, Peter Schofield Cornell University, Ithaca, New YorkSearch for more papers by this author Alice N. Pell, Alice N. Pell Cornell University, Ithaca, New YorkSearch for more papers by this authorPeter Schofield, Peter Schofield Cornell University, Ithaca, New YorkSearch for more papers by this author Book Editor(s):H. G. Jung, H. G. JungSearch for more papers by this authorD. R. Buxton, D. R. BuxtonSearch for more papers by this authorR. D. Hatfield, R. D. HatfieldSearch for more papers by this authorJ. Ralph, J. RalphSearch for more papers by this author First published: 01 January 1993 https://doi.org/10.2134/1993.foragecellwall.c16Citations: 6Book Series:ASA, CSSA, and SSSA Books AboutPDFPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShareShare a linkShare onEmailFacebookTwitterLinkedInRedditWechat Summary This chapter focuses on how cellulolytic microbes adhere to fiber. The outline of some mechanisms important in noncellulolytic systems is included both to provide an overview of the microbial adhesion field and to suggest areas that need to be considered in studies of cellulolytic organisms. The adhesion process is initiated when the bacterium is within range of the attractive van der Waals forces. In addition, adhesion which is mediated by surface appendages such as fimbriae may involve both hydrophobicity and specific binding. Adhesion occurred when the interfacial free energy was negative and cells detached when the interfacial free energy was positive. Adhesion of both the polystyrene beads and bacteria decreased when low ionic strength buffers were used, presumably due to increased electrostatic repulsion. Investigators have focused on three structures believed to be important in adhesion: large multicomponent complexes, exopolysaccharides, and cellulase binding domains. References Abbott, A., P.R. Rutter, and R.C.W. Berkeley. 1983. The influence of ionic strength, pH and a protein layer on the interaction between Streptococcus mutans and glass surfaces. J. Gen. Microbiol. 129: 439–445. CASPubMedWeb of Science®Google Scholar Abraham, S.N., J.P. Babu, C.S. Giampapa, D.L. Hasty, W.A. Simpson, and E.A. Beachey. 1985. Protection against Escherichia coli-induced urinary tract infections with hybridoma antibodies directed against type 1 fimbriae or complementary d-mannose receptors. Infect. Immun. 48: 625–628. 10.1128/IAI.48.3.625-628.1985 CASPubMedWeb of Science®Google Scholar Akin, D.E. 1979. Microscopic evaluation of forage digestion by rumen microorganisms—A review. J. Anim. Sci. 48: 701–710. 10.2527/jas1979.483701x CASPubMedWeb of Science®Google Scholar Akin, D.E. 1980. Evaluation by electron microscope and anaerobic culture of types of rumen bacteria associated with digestion of forage cell walls. Appl. Environ. Microbiol. 39: 242–252. 10.1128/AEM.39.1.242-252.1980 CASPubMedWeb of Science®Google Scholar Akin, D.E., and H.E. Amos. 1979. Mode of attack on orchardgrass leaf blades by rumen protozoa. Appl. Environ. Microbiol. 37: 332–338. 10.1128/AEM.37.2.332-338.1979 CASPubMedWeb of Science®Google Scholar Akin, D.E., and R. Benner. 1988. Degradation of polysaccharides and lignin by ruminal bacteria and fungi. Appl. Environ. Microbiol. 54: 1117–1125. 10.1128/aem.54.5.1117-1125.1988 CASPubMedWeb of Science®Google Scholar Akin, D.E., G.L.R. Gordon, and J.P. Hogan. 1983. Rumen bacterial and fungal degradation of Digitaria pentzii grown with or without sulfur. Appl. Environ. Microbiol. 46: 738–748. 10.1128/AEM.46.3.738-748.1983 CASPubMedWeb of Science®Google Scholar Akin, D.E., C.E. Lyon, W.R. Windham, and L.L. Rigsby. 1989. Physical degradation of lignified stem tissues by ruminal fungi. Appl. Environ. Microbiol. 55: 611–616. 10.1128/AEM.55.3.611-616.1989 CASPubMedWeb of Science®Google Scholar Allison, D.G., and I.W. Sutherland. 1987. The role of exopolysaccharides in adhesion of freshwater bacteria. J. Gen. Microbiol. 133: 1319–1327. CASWeb of Science®Google Scholar Anderson, K.L., and A.A. Salyers. 1989a. Biochemical evidence that starch breakdown by Bacteroides thetaiotaomicron involves other membrane starch-binding sites and periplasmic starch-degrading enzymes. J. Bacteriol. 171: 3192–3198. 10.1128/jb.171.6.3192-3198.1989 CASPubMedWeb of Science®Google Scholar Anderson, K.L., and A.A. Salyers. 1989b. Genetic evidence that outer membrane binding of starch is required for starch utilization by Bacteroides thetaiotaomicron . J. Bacteriol. 171: 3199–3204. 10.1128/jb.171.6.3199-3204.1989 CASPubMedWeb of Science®Google Scholar Bauchop, T. 1979. The rumen ciliate Epidinium in primary degradation of plant tissues. Appl. Environ. Microbiol. 37: 1217–1223. 10.1128/AEM.37.6.1217-1223.1979 CASPubMedWeb of Science®Google Scholar Bauchop, T., and R.T.J. Clarke. 1976. Attachment of the ciliate Epidinium Crawley to plant fragments in the sheep rumen. Appl. Environ. Microbiol. 32: 417–422. 10.1128/AEM.32.3.417-422.1976 CASPubMedWeb of Science®Google Scholar Bayer, E.A., R. Kenig, and R. Lamed. 1983. Adherence of Clostridium thermocellum to cellulose. J. Bacteriol. 156: 818–827. 10.1128/JB.156.2.818-827.1983 CASPubMedWeb of Science®Google Scholar Bayer, E.A., E. Setter, and R. Lamed. 1985. Organization and distribution of the cellulosome in Clostridium thermocellum . J. Bacteriol. 163: 552–559. 10.1128/JB.163.2.552-559.1985 CASPubMedWeb of Science®Google Scholar Beachey, E.H. 1981. Bacterial adherence: adhesin-receptor interactions mediating the attachment of bacteria to mucosal surfaces. J. Infect. Dis. 143: 325–345. 10.1093/infdis/143.3.325 CASPubMedWeb of Science®Google Scholar Beachey, E.H., and H.S. Courtney. 1989. Bacterial adherence of group A streptococci to mucosal surfaces. Respiration 55: 33–40. 10.1159/000195749 PubMedGoogle Scholar Béguin, P. 1990. Molecular biology of cellulose degradation. Annu. Rev. Microbiol. 44: 219–248. 10.1146/annurev.mi.44.100190.001251 CASPubMedWeb of Science®Google Scholar Bhat, S., R.J. Wallace, and E.R. Orskov. 1988. Study of the relation between straw quality and its colonization by rumen micro-organisms. J. Agric. Sci. 110: 561–564. 10.1017/S0021859600082137 Web of Science®Google Scholar Bhat, S., R.J. Wallace, and E.R. Orskov. 1990. Adhesion of cellulolytic ruminal bacteria to barley straw. Appl. Environ. Microbiol. 56: 2698–2703. 10.1128/AEM.56.9.2698-2703.1990 CASPubMedWeb of Science®Google Scholar Bohatier, J., J. Sénaud, and M. Benyahya. 1990. In situ degradation of cellulose fibres by the entidiniomorph rumen ciliate Polyplastron multivesiculatum . Protoplasma 154: 122–131. 10.1007/BF01539839 Web of Science®Google Scholar Busscher, H.J., J. Sjollema, and H.C. van der Mei. 1990. Relative importance of surface free energy as a measure of hydrophobicity in bacterial adhesion to solid surfaces. p. 335–360. In R.J. Doyle and M. Rosenberg (ed.) Microbial cell surface hydrophobicity. Am. Soc. Microbiol., Washington, DC. Google Scholar Busscher, H.J., and A.H. Weerkamp. 1987. Specific and non-specific interactions in bacterial adhesion to solid substrata. FEMS Microbiol. Rev. 46: 165–173. 10.1111/j.1574-6968.1987.tb02457.x CASWeb of Science®Google Scholar Chauvaux, S., P. Béguin, J.P. Aubert, K.M. Bhat, L.A. Gow, T.M. Wood, and A. Bairoch. 1990. Calcium-binding affinity and calcium-enchanced activity of Clostridium thermocellum endoglucanase D. Biochem. J. 265: 261–265. 10.1042/bj2650261 CASPubMedWeb of Science®Google Scholar Cheng, K.H., D.E. Akin, and J.W. Costerton. 1977. Rumen bacteria: Interaction with particulate dietary components and response to dietary variation. Fed. Proc. 36: 193. CASPubMedWeb of Science®Google Scholar Cheng, K.-J., and J.W. Costerton. 1980. Adhesive bacteria—Their role in the digestion of plant material, urea and epithelial cells. p. 227–250. In Y. Ruckebusch and P. Thivend (ed.) Digestive physiology and metabolism in ruminants. AVI Publ., Westport, CT. 10.1007/978-94-011-8067-2_11 Google Scholar Cheng, K.-J., H. Kudo, S.H. Duncan, A. Mesbah, C.S. Stewart, A. Bernalier, G. Fonty, and J.W. Costerton. 1991. Prevention of fungal colonization and digestion of cellulose by the addition of methylcellulose. Can. J. Microbiol. 37: 484–487. 10.1139/m91-081 CASPubMedWeb of Science®Google Scholar Chesson, A., and C.W. Forsberg. 1988. Polysaccharide degradation by rumen microorganisms. p. 251–284. In P.N. Hobson (ed.) The rumen microbial ecosystem. Elsevier Sci. Publ. Co., New York. Google Scholar Christensen, B.E. 1989. The role of extracellular polysaccharides in biofilms. J. Biotechnol. 10: 181–202. 10.1016/0168-1656(89)90064-3 CASWeb of Science®Google Scholar Coleman, G.S. 1985. The cellulase content of 15 species of entodiniomorphid protozoa, mixed bacteria and plant debris isolated from the ovine rumen. J. Agric. Sci. 104: 349–360. 10.1017/S0021859600044038 CASWeb of Science®Google Scholar Costerton, J.W., K.J. Cheng, G.G. Geesey, T.I. Ladd, J.C. Nickel, M. Dasgupta, and T.J. Marrie. 1987. Bacterial biofilms in nature and disease. Ann. Rev. Microbiol. 41: 435–464. 10.1146/annurev.mi.41.100187.002251 CASPubMedWeb of Science®Google Scholar Coughlan, M.P. 1991. Mechanisms of cellulose degradation by fungi and bacteria. Anim. Feed Sci. Technol. 32: 77–100. 10.1016/0377-8401(91)90012-H CASWeb of Science®Google Scholar Courtney, H.S., D.L. Hasty, and I. Ofek. 1990. Hydrophobicity of group A streptococci and its relationship to adhesion of streptococci to host cells. p. 361–386. In R.J. Doyle and M. Rosenberg (ed.) Microbial cell surface hydrophobicity. Am. Soc. Microbiol., Washington, DC. Google Scholar Cowan, M.M., K.G. Taylor, and R.J. Doyle. 1986. Kinetic analysis of Streptococcus sanguis adhesion to artificial pellicle. J. Dent. Res. 65: 1278–1283. 10.1177/00220345860650101501 CASPubMedWeb of Science®Google Scholar Dazzo, F.B., J.W. Kijne, K. Haahtela, and T.K. Korhonen. 1986. Fimbriae, lectins and agglutinins of nitrogen fixing bacteria. p. 237–254. In D. Mirelman (ed.) Microbial lectins and agglutinins. John Wiley and Sons, New York. Google Scholar Dehority, B.A., and P.A. Tirabasso. 1989. Factors affecting the migration and sequestration of rumen protozoa in the family Isotrichidae. J. Gen. Microbiol. 135: 539–548. Web of Science®Google Scholar Din, N., N.R. Gilkes, B. Tekant, R.C. Miller, Jr., R.A.J. Warren, and D.G. Kilburn. 1991. Non-hydrolytic disruption of cellulose fibres by the binding domain of a bacterial cellulase. Bio/Technology 9: 1096–1099. 10.1038/nbt1191-1096 CASWeb of Science®Google Scholar Dinsdale, D., E.J. Morris, and J.S.D. Bacon. 1978. Electron microscopy of the microbial populations present and their modes of attack on various cellulosic substrates undergoing digestion in the sheep rumen. Appl. Environ. Microbiol. 36: 160–168. 10.1128/AEM.36.1.160-168.1978 CASPubMedWeb of Science®Google Scholar Doig, P., T. Todd, P.A. Sastry, K.K. Lee, R.S. Hodges, W. Paranchych, and R.T. Irvin. 1988. Role of pili in adhesion of Pseudomonas aeroginosa to human respiratory epithelial cells. Infect. Immun. 56: 1641–1646. 10.1128/IAI.56.6.1641-1646.1988 CASPubMedWeb of Science®Google Scholar Doyle, R.J., J.D. Oakley, K.R. Murphy, D. McAlister, and K.G. Taylor. 1985. Graphical analyses of adherence data. p. 109–113. In S.E. Mergenhagen and B. Rosan (ed.) Molecular basis of oral microbial adhesion. Am. Soc. Microbiol., Washington, DC. Web of Science®Google Scholar Doyle, R.J., and M. Rosenberg. 1990. Microbial cell surface hydrophobicity. Am. Soc. Microbiol., Washington, DC. Google Scholar Doyle, R.J., and E.M. Sonnenfeld. 1989. Properties of the cell surfaces of pathogenic bacteria. Int. Rev. Cytol. 118: 33–92. 10.1016/S0074-7696(08)60872-4 CASPubMedWeb of Science®Google Scholar Duguid, J.P., and D.C. Old. 1990. Adhesive properties of Enterobacteriaceae. p. 187–217. In E.H. Beachey (ed.) Bacterial adherence. Chapman and Hall, London. Google Scholar Durrant, A.J., J. Hall, G.P. Hazlewood, and H.J. Gilbert. 1991. The non-catalytic C-terminal region of endoglucanase E from Clostridium thermocellum contains a cellulose binding domain. Biochem. J. 273: 289–293. 10.1042/bj2730289 CASPubMedWeb of Science®Google Scholar Eisenstein, B.I. 1981. Phase variation of type 1 fimbriae is under transcriptional control. Science 214: 337–339. 10.1126/science.6116279 CASADSPubMedWeb of Science®Google Scholar Eisenstein, B.I. 1988. Type 1 Fimbriae of Escherichia coli: genetic regulation, morphogenesis, and role in pathogenesis. Rev. Infect. Dis. 10: S341–S344. 10.1093/cid/10.Supplement_2.S341 CASPubMedGoogle Scholar Every, D., and T.M. Skerman. 1983. Surface structure of Bacteroides nodosus in relation to virulence and immunoprotection in sheep. J. Gen. Microbiol. 129: 225–234. CASPubMedWeb of Science®Google Scholar Fachon-Kalweit, S., B.L. Elder, and P. Fives-Taylor. 1985. Antibodies that bind to fimbriae block adhesion of Streptococcus sanguis to saliva-coated hydroxyapatite. Infect. Immun. 48: 617–624. 10.1128/IAI.48.3.617-624.1985 CASPubMedWeb of Science®Google Scholar L.T. Fan, M.M. Gharpuray, and Y.-H. Lee. 1987. Cellulose hydrolysis. Springer-Verlag, Berlin. 10.1007/978-3-642-72575-3 Google Scholar Fenno, J.C., D.J. LeBlanc, and P. Fives-Taylor. 1989. Nucleotide sequence analysis of a type 1 fimbrial gene of Streptococcus sanguis FW213. Infect. Immun. 57: 3527–3533. 10.1128/IAI.57.11.3527-3533.1989 CASPubMedWeb of Science®Google Scholar Ferreira, L.M.A., A.J. Durrant, J. Hall, G.P. Hazlewood, and H.J. Gilbert. 1990. Spatial separation of protein domains is not necessary for catalytic activity or substrate binding in a xylanase. Biochem. J. 269: 261–264. 10.1042/bj2690261 CASPubMedWeb of Science®Google Scholar Ferreira, L.M.A., G.P. Hazlewood, P.J. Barker, and H.J. Gilbert. 1991. The cellodextrinase from Pseudomonas fluorescens subsp. cellulosa consists of multiple functional domains. Biochem. J. 279: 793–799. 10.1042/bj2790793 CASPubMedWeb of Science®Google Scholar Fives-Taylor, P.M., and D.W. Thompson. 1985. Surface properties of Streptococcus sanguis FW213 mutants nonadherent to saliva-coated hydroxyapatite. Infect. Immun. 47: 752–759. 10.1128/IAI.47.3.752-759.1985 CASPubMedWeb of Science®Google Scholar Fletcher, M. 1984. Comparative physiology of attached and free-living bacteria. p. 223–232. In K.C. Marshall (ed.) Microbial adhesion and aggregation. Springer-Verlag, Berlin. 10.1007/978-3-642-70137-5_16 Google Scholar Fletcher, M. 1991. The physiological activity of bacteria attached to solid surfaces. Adv. Microb. Physiol. 32: 53–85. 10.1016/S0065-2911(08)60005-3 CASPubMedWeb of Science®Google Scholar Fonty, G., and K.N. Joblin. 1991. Rumen anaerobic fungi: Their role and interactions with other rumen microorganisms in relation to fiber digestion. p. 655–680. In T. Tsuda et al. (ed.) Physiological aspects of digestion and metabolism in ruminants. Academic Press, San Diego. 10.1016/B978-0-12-702290-1.50033-3 Web of Science®Google Scholar Gaboriaud, C., V. Bissery, T. Benchetrit, and J.P. Mornon. 1987. Hydrophobic cluster analysis: an effective new way to compare and analyze amino acid sequences. FEBS Lett. 224: 149–155. 10.1016/0014-5793(87)80439-8 CASPubMedWeb of Science®Google Scholar Geesey, G.G., and L. Jang. 1989. Interactions between metal ions and capsular polymers. p. 325–357. In T.J. Beveridge and R.J. Doyle (ed.) Metal ions and bacteria. Wiley Interscience, New York. Google Scholar Ghangas, G.S., and D.B. Wilson. 1988. Cloning of the Thermomonospora fusca endoglucanase E2 gene in Streptomyces lividans: Affinity purification and functional domains of the cloned gene product. Appl. Environ. Microbiol. 54: 2521–2526. 10.1128/AEM.54.10.2521-2526.1988 CASPubMedWeb of Science®Google Scholar Gibbons, R.J. 1980. Adhesion of bacteria to the surface of the mouth. p. 351–386. In R.C.W. Berkeley et al. (ed.) Microbial adhesion to surfaces. Ellis Horwood Ltd., Chichester. Google Scholar Gibbons, R.J. 1984. Adherent interactions which may affect microbial ecology in the mouth. J. Dent. Res. 63: 378–385. 10.1177/00220345840630030401 CASPubMedWeb of Science®Google Scholar Gibbons, R.J., E.C. Moreno, and I. Etherden. 1983. Concentration-dependent multiple binding sites on saliva-treated hydroxyapatite for Streptococcus sanguis . Infect. Immun. 39: 280–289. 10.1128/IAI.39.1.280-289.1983 CASPubMedWeb of Science®Google Scholar Gibbons, R.J., E.C. Moreno, and D.M. Spinell. 1976. Model delineating the effects of a salivary pellicle on the adsorption of Streptococcus miteor onto hydroxyapatite. Infect. Immun. 14: 1109–1112. 10.1128/IAI.14.4.1109-1112.1976 CASPubMedWeb of Science®Google Scholar Gibbons, R.J., and J. van Houte. 1975. Bacterial adherence in oral microbial ecology. Ann. Rev. Microbiol. 29: 19–44. 10.1146/annurev.mi.29.100175.000315 CASPubMedWeb of Science®Google Scholar Gilbert, H.J., J. Hall, G.P. Hazlewood, and L.M.A. Ferreira. 1990. The N-terminal region of an endoglucanase from Pseudomonas fluorescens subspecies cellulosa constitutes a cellulose-binding domain that is distinct from the catalytic centre. Mol. Microbiol. 4: 759–767. 10.1111/j.1365-2958.1990.tb00646.x CASPubMedWeb of Science®Google Scholar Gilkes, N.R., D.G. Kilburn, R.C. Miller, Jr., and R.A.J. Warren. 1989. Structural and functional analysis of a bacterial cellulase by proteolysis. J. Biol. Chem. 264: 17802–17808. CASPubMedWeb of Science®Google Scholar Gilkes, N.R., R.A.J. Warren, R.C. Miller, Jr., and D.G. Kilburn. 1988. Precise excision of the cellulose binding domains from two Cellulomonas fimi cellulases by a homologous protease and the effect on catalysis. J. Biol. Chem. 10401–10407. PubMedWeb of Science®Google Scholar Gong, J., and C.W. Forsberg. 1989. Factors affecting adhesion of Fibrobacter succinogenes subsp. succinogenes S85 and adherence-defective mutants to cellulose. Appl. Environ. Microbiol. 55: 3039–3044. 10.1128/AEM.55.12.3039-3044.1989 CASPubMedWeb of Science®Google Scholar Grain, J., and J. Sénaud. 1985. Dégradation de fragments de luzerne fraîche par le cilié du rumen Epidinium ecaudatum: attachement, ingestion et digestion. Protistologica 21: 447–466. Google Scholar Grenet, E., A. Breton, P. Barry, and G. Fonty. 1989. Rumen anaerobic fungi and plant substrate colonization as affected by diet composition. Anim. Feed Sci. Technol. 26: 55–70. 10.1016/0377-8401(89)90006-0 Web of Science®Google Scholar Groleau, D., and C.W. Forsberg. 1981. Cellulolytic activity of the rumen bacterium Bacteroides succinogenes . Can. J. Microbiol. 27: 517–530. 10.1139/m81-077 CASPubMedWeb of Science®Google Scholar Haahtela, K., and T.K. Korhonen. 1985. In vitro adhesion of N2-fixing enteric bacteria to roots of grasses and cereals. Appl. Environ. Microbiol. 51: 1186–1190. 10.1128/AEM.49.5.1186-1190.1985 Google Scholar Hall, J., G.P. Hazlewood, P.J. Barker, and H.J. Gilbert. 1988. Conserved reiterated domains in Clostridium thermocellum endoglucanases are not essential for catalytic activity. Gene 69: 29–38. 10.1016/0378-1119(88)90375-7 CASPubMedWeb of Science®Google Scholar Hata, J.S., and R.B. Fick, Jr. 1991. Airway adherence of Pseudomonas aeruginosa: mucoexopolysaccharide binding to human and bovine airway proteins. J. Lab. Clin. Med. 117: 410–422. CASPubMedWeb of Science®Google Scholar Hazlewood, G.P., K. Davidson, J.H. Clarke, A.J. Durrant, J. Hall, and H.J. Gilbert. 1990a. Endoglucanase E, produced at high level in Escherichia coli as a lacZ' fusion protein, is part of the Clostridium thermocellum cellulosome. Enzyme Microb. Technol. 12: 656–662. 10.1016/0141-0229(90)90004-A CASPubMedWeb of Science®Google Scholar Hazlewood, G.P., K. Davidson, J.I. Laurie, M.P.M. Romaniec, and H.J. Gilbert. 1990b. Cloning and sequencing of the celA gene encoding endoglucanase A of Butyrivibrio fibrisolvens strain A46. J. Gen. Microbiol. 136: 2089–2097. 10.1099/00221287-136-10-2089 CASPubMedWeb of Science®Google Scholar Henrissat, B., M. Claeyssens, P. Tomme, L. Lemesle, and J.P. Mornon. 1989. Cellulase families revealed by hydrophobic cluster analysis. Gene 81: 83–95. 10.1016/0378-1119(89)90339-9 CASPubMedWeb of Science®Google Scholar Hébraud, M., and M. Fèvre. 1988. Characterization of glycoside and polysaccharide hydrolases secreted by the rumen anaerobic fungi Neocallimastix frontalis, Sphaeromonas communis and Piromonas communis . J. Gen. Microbiol. 134: 1123–1129. CASWeb of Science®Google Scholar Ho, Y.W., N. Abdullah, and S. Jalaludin. 1988. Colonization of guinea grass by anaerobic rumen fungi in swamp buffalo and cattle. Anim. Feed Sci. Technol. 22: 161–171. 10.1016/0377-8401(88)90083-1 PubMedWeb of Science®Google Scholar Hon-Nami, K., M.P. Coughlan, H. Hon-Nami, and L.G. Ljundahl. 1986. Separation and characterization of the complexes constituting the cellulolytic enzyme system of Clostridium thermocellum . Arch. Microbiol. 145: 13–19. 10.1007/BF00413021 CASWeb of Science®Google Scholar Howard, G.T., and B.A. White. 1988. Molecular cloning and expression of cellulase genes from Ruminococcus albus 8 in Escherichia coli bacteriophage lambda. Appl. Environ. Microbiol. 54: 1752–1755. 10.1128/AEM.54.7.1752-1755.1988 CASPubMedWeb of Science®Google Scholar Huang, L., and C.W. Forsberg. 1990. Cellulose digestion and cellulase regulation and distribution in Fibrobacter succinogenes subsp. succinogenes . Appl. Environ. Microbiol. 56: 1221–1228. 10.1128/AEM.56.5.1221-1228.1990 CASPubMedWeb of Science®Google Scholar James, W.P.T., W.J. Branch, and D.A.T. Southgate. 1978. Calcium binding by dietary fibre. Lancet 1: 638–639. 10.1016/S0140-6736(78)91141-8 CASPubMedWeb of Science®Google Scholar Johnson, E.A., and A.L. Demain. 1984. Probable involvement of sulfhydryl groups and a metal as essential components of the cellulase of Clostridium thermocellum . Arch. Microbiol. 137: 135–138. 10.1007/BF00414454 CASWeb of Science®Google Scholar Jones, G.W., and R.E. Isaacson. 1983. Proteinaceous bacterial adhesins and their receptors. CRC Crit. Rev. Microbiol. 10: 229–260. 10.3109/10408418209113564 CASPubMedWeb of Science®Google Scholar Jouany, J.P., D.I. Demeyer, and J. Grain. 1988. Effect of defaunating the rumen. Anim. Feed Sci. Technol. 21: 229–265. 10.1016/0377-8401(88)90105-8 Web of Science®Google Scholar Kerley, M.S., G.C. Fahey, L.L. Berger, J.M. Gould, and F.L. Baker. 1985. Alkaline hydrogen peroxide treatment unlocks energy in agricultural by-products. Science 230: 820–822. 10.1126/science.230.4727.820 CASADSPubMedWeb of Science®Google Scholar Kjelleberg, S. 1984. Adhesion to inanimate surfaces. p. 51–70. In K.C. Marshall (ed.) Microbial adhesion and aggregation. Springer-Verlag, Berlin. 10.1007/978-3-642-70137-5_5 Google Scholar Kobayashi, T., M.P.M. Romaniec, U. Fauth, and A.L. Demain. 1990. Subcellulosome preparation with high cellulase activity from Clostridium thermocellum . Appl. Environ. Microbiol. 56: 3040–3046. 10.1128/AEM.56.10.3040-3046.1990 CASPubMedWeb of Science®Google Scholar Kohring, S., J. Wiegel, and F. Mayer. 1990. Subunit composition and glycosidic activities of the cellulase complex from Clostridium thermocellum JW20. Appl. Environ. Microbiol. 56: 3798–3804. 10.1128/AEM.56.12.3798-3804.1990 CASPubMedWeb of Science®Google Scholar Kolbe, J., and C.P. Kubicek. 1990. Quantification and identification of the main components of the Trichoderma cellulase complex with monoclonal antibodies using an enzyme-linked immunosorbent assay (ELISA). Appl. Microbiol. Biotechnol. 34: 26–30. 10.1007/BF00170918 CASPubMedWeb of Science®Google Scholar Kolenbrander, P.E. 1989. Surface recognition among oral bacteria: Multigeneric coaggregations and their mediators. CRC Crit. Rev. Microbiol. 17: 137–159. 10.3109/10408418909105746 CASPubMedWeb of Science®Google Scholar Kudo, H., K.J. Cheng, and J.W. Costerton. 1987. Electron microscopic study of the methylcellulose-mediated detachment of cellulolytic rumen bacteria from cellulose fibers. Can. J. Microbiol. 33: 267–272. 10.1139/m87-045 CASPubMedWeb of Science®Google Scholar Lamed, R., and E.A. Bayer. 1986. Contact and cellulolysis in Clostridium thermocellum via extensile surface organelles. Experientia 42: 72–73. 10.1007/BF01975901 CASWeb of Science®Google Scholar Lamed, R., and E.A. Bayer. 1988a. The cellulosome of Clostridium thermocellum . Adv. Appl. Microbiol. 33: 1–46. 10.1016/S0065-2164(08)70203-X Web of Science®Google Scholar Lamed, R., and E.A. Bayer. 1988b. The cellulosome concept: exocellular/extracellular enzyme reactor centers for efficient binding and cellulolysis. p. 101–116. In J.P. Aubert et al. (ed.) Biochemistry and genetics of cellulose degradation. Academic Press, New York. Google Scholar Lamed, R., J. Naimark, E. Morgenstern, and E.A. Bayer. 1987. Specialized cell surface structures in cellulolytic bacteria. J. Bacteriol. 69: 3792–3800. 10.1128/jb.169.8.3792-3800.1987 Web of Science®Google Scholar Langsford, M.L., N.R. Gilkes, B. Singh, B. Moser, R.C. Miller, Jr., R.A.J. Warren, and D.G. Kilburn. 1987. Glycosylation of bacterial cellulases prevents proteolytic cleavage between functional domains. FEBS Lett. 225: 163–167. 10.1016/0014-5793(87)81150-X CASPubMedWeb of Science®Google Scholar Latham, M.J. 1980. Adhesion of rumen bacteria to plant cell walls. p. 339–350. In R.C.W. Berkeley et al. (ed.) Microbial adhesion to surfaces. Ellis Horwood, Ltd., Chichester. Google Scholar Latham, M.J., B.E. Brooker, G.L. Pettipher, and P.J. Harris. 1978a. Ruminococcus flavefaciens cell coat and adhesion to cotton cellulose and to cell walls in leaves of perennial ryegrass (Lolium perenne). Appl. Environ. Microbiol. 35: 156–165. 10.1128/AEM.35.1.156-165.1978 CASPubMedWeb of Science®Google Scholar Latham, M.J., B.E. Brooker, G.L. Pettipher, and P.J. Harris. 1978b. Adhesion of Bacteroides succinogenes in pure culture and in the presence of Ruminococcus flavefaciens to cell walls in leaves of perennial ryegrass (Lolium perenne). Appl. Environ. Microbiol. 35: 1166–1173. 10.1128/AEM.35.6.1166-1173.1978 CASPubMedWeb of Science®Google Scholar Leatherwood, J.M. 1973. Cellulose degradation by Ruminococcus. Fed. Proc. 32: 1815–1819. Google Scholar Lee, S.B., H.S. Shin, D.D.Y. Ryu, and M. Mandels. 1982. Adsorption of cellulase on cellulose: Effect of physicochemical properties of cellulose on adsorption and rate of hydrolysis. Biotechnol. Bioeng. 24: 2137–2153. 10.1002/bit.260241003 CASPubMedWeb of Science®Google Scholar Lin, E., and D.B. Wilson. 1988. Identification of a celE-binding protein and its potential role in induction of the celE gene in Thermomonospora fusca . J. Bacteriol. 170: 3843–3846. 10.1128/jb.170.9.3843-3846.1988 CASPubMedWeb of Science®Google Scholar Lindberg, F., B. Lund, L. Johansson, and S. Normark. 1987. Localization of the receptor-binding protein adhesin at the tip of the bacterial pilus. Nature 328: 84–87. 10.1038/328084a0 CASADSPubMedWeb of Science®Google Scholar Lindberg, F., B. Lund, and S. Normark. 1986. Gene products specifying adhesion of uropathogenic Escherichia coli are minor components of pili. Proc. Natl. Acad. Sci. 83: 1891–1895. 10.1073/pnas.83.6.1891 CASADSPubMedWeb of Science®Google Scholar Lintermans, P.F., A. Bertels, C. Schlicker, F. Deboeck, G. Charlier, P. Pohl, M. Norgren, S. Normark, M. Van Montagu, and H. DeGreve. 1991. Identification, characterization, and nucleotide sequence of the F17-G gene, which determines receptor binding of Escherichia coli F17 fimbriae. J. Bacteriol. 173: 3366–3373. 10.1128/jb.173.11.3366-3373.1991 CASPubMedWeb of Science®Google Scholar LiPuma, J.J., and J.R. Gilsdorf. 1987. Role of capsule in adherence of Haemophilus influenzae type b to human buccal cells. Infect. Immun. 55: 2308–2310. 10.1128/IAI.55.9.2308-2310.1987 CASPubMedWeb of Science®Google Scholar London, J., A.R. Hand, E.I. Weiss, and J. Allen. 1989. Bacteroides loeschei PK1295 cells express two distinct adhesins simultaneously. Infect. Immun. 57: 3940–3944. 10.1128/IAI.57.12.3940-3944.1989 CASPubMedWeb of Science®Google Scholar MacKenzie, C.R., D. Bilous, and G.B. Patel. 1985. Studies on cellulose hydrolysis by Acetivib

Referência(s)
Altmetric
PlumX