Atomic modelling and systematic mutagenesis identify residues in multiple drug binding sites that are essential for drug resistance in the major Candida transporter Cdr1
2016; Elsevier BV; Volume: 1858; Issue: 11 Linguagem: Inglês
10.1016/j.bbamem.2016.08.011
ISSN1879-2642
AutoresShweta Nim, Lucía González Lobato, Alexis Moréno, Vincent Chaptal, Manpreet Kaur Rawal, Pierre Falson, Rajendra Prasad,
Tópico(s)Antibiotic Resistance in Bacteria
ResumoThe ABC (ATP-Binding Cassette) transporter Cdr1 (Candida drug resistance 1) protein (Cdr1p) of Candida albicans, shows promiscuity towards the substrate it exports and plays a major role in antifungal resistance. It has two transmembrane domains (TMDs) comprising of six transmembrane helices (TMH) that envisage and confer the substrate specificity and two nucleotide binding domains (NBDs), interconnected by extracellular loops (ECLs) and intracellular loops (ICLs) Cdr1p. This study explores the diverse substrate specificity spectrum to get a deeper insight into the structural and functional features of Cdr1p. By screening with the variety of compounds towards an in-house TMH 252 mutant library of Cdr1p, we establish new substrates of Cdr1p. The localization of substrate-susceptible mutants in an ABCG5/G8 homology model highlights the common and specific binding pockets inside the membrane domain, where rhodamines and tetrazoliums mainly engage the N-moiety of Cdr1p, binding between TMH 2, 11 and surrounded by TMH 1, 5. Whereas, tin chlorides involve both N and C moieties located at the interface of TMH 2, 11, 1 and 5. Further, screening of the in house TMH mutant library of Cdr1p displays the TMH12 interaction with tetrazolium chloride, trimethyltin chloride and a Ca2+ ionophore, A23187. In silico localization reveals a binding site at the TMH 12, 9 and 10 interface, which is widely exposed to the lipid interface. Together, for the first time, our study shows the molecular localization of Cdr1p substrates-binding sites and demonstrates the participation of TMH12 in a peripheral drug binding site.
Referência(s)