Scientific Opinion on the potential reduction of the currently authorised maximum zinc content in complete feed
2014; Wiley; Volume: 12; Issue: 5 Linguagem: Inglês
10.2903/j.efsa.2014.3668
ISSN1831-4732
Tópico(s)Animal Nutrition and Physiology
ResumoEFSA JournalVolume 12, Issue 5 3668 OpinionOpen Access Scientific Opinion on the potential reduction of the currently authorised maximum zinc content in complete feed EFSA Panel on Additives and Products or Substances used in Animal Feed (FEEDAP), EFSA Panel on Additives and Products or Substances used in Animal Feed (FEEDAP)Search for more papers by this author EFSA Panel on Additives and Products or Substances used in Animal Feed (FEEDAP), EFSA Panel on Additives and Products or Substances used in Animal Feed (FEEDAP)Search for more papers by this author First published: 05 May 2014 https://doi.org/10.2903/j.efsa.2014.3668Citations: 25 Panel members: Gabriele Aquilina, Vasileios Bampidis, Maria De Lourdes Bastos, Lucio Guido Costa, Gerhard Flachowsky, Mikolaj Antoni Gralak, Christer Hogstrand, Lubomir Leng, Secundino López-Puente, Giovanna Martelli, Baltasar Mayo, Fernando Ramos, Derek Renshaw, Guido Rychen, Maria Saarela, Kristen Sejrsen, Patrick Van Beelen, Robert John Wallace and Johannes Westendorf. Correspondence: feedap@efsa.europa.eu Acknowledgement: The Panel wishes to thank the members of the Working Group on Revision of Maximum Content of Zinc in Feed, including Noël A. Dierick, Jürgen Gropp, Catherine Jondreville, Marta Lopez Alonso, Anne Katrine Lundebye, Wolfgang Maret and Patrick Schlegel for the preparatory work on this scientific opinion. The Panel also wishes to thank the Authorities of EU Member States and EEA/EFTA countries, and stakeholders who provided information following a call for data on zinc in animal nutrition launched by EFSA. Adoption date: 8 April 2014 Published date: 5 May 2014 Updated: 22 February 2017 Question number: EFSA-Q-2012-00966 On request from: European Commission AboutPDF ToolsExport citationAdd to favoritesTrack citation ShareShare Give accessShare full text accessShare full-text accessPlease review our Terms and Conditions of Use and check box below to share full-text version of article.I have read and accept the Wiley Online Library Terms and Conditions of UseShareable LinkUse the link below to share a full-text version of this article with your friends and colleagues. Learn more.Copy URL Share a linkShare onFacebookTwitterLinkedInRedditWechat Abstract A critical review of (i) the zinc requirements of food-producing and pet animals, (ii) the zinc concentration of feed materials and (iii) the calculated background zinc concentration of complete feed supports the possibility of a considerable reduction of the currently authorised maximum concentration for total zinc in feed. The FEEDAP Panel developed, based on an approximation using zinc requirements and background data, potential new maximum contents, which could replace the current ones. The newly proposed total maximum contents are: 150 mg Zn/kg complete feed for piglets, sows, rabbits, salmonids, cats and dogs; 120 mg Zn/kg complete feed for turkeys for fattening; 100 mg Zn/kg complete feed for all other species and categories. The use of phytase in feeding piglets, pigs for fattening and sows would allow a further reduction of the newly proposed total maximum contents by 30 % (from 150 to 110 mg Zn/kg feed for piglets and sows and from 100 to 70 mg Zn/kg feed for pigs for fattening). The newly proposed total maximum contents ensure health, welfare and productivity of the target species and do not affect consumer safety. The FEEDAP Panel expects that the introduction of the newly proposed total maximum contents, provided they are applied in feeding practices, would result in an overall reduction of zinc emissions from animal production of about 20 %. References Aarestrup FM, Cavaco L and Hasman H, 2010. Decreased susceptibility to zinc chloride is associated with methicillin resistant Staphylococcus aureus CC398 in Danish swine. Veterinary Microbiology, 142, 455– 457. Adeola O, Lawrence BV, Sutton AL and Cline TR, 1995. Phytase-Induced Changes in Mineral Utilization in Zinc-Supplemented Diets for Pigs. Journal of Animal Science, 73, 3384– 3391. Agersø Y, Hasman H, Cavaco LM, Pedersen K and Aarestrup FM, 2012. Study of methicillin resistant Staphylococcus aureus (MRSA) in Danish pigs at slaughter and in imported retail meat reveals a novel MRSA type in slaughter pigs. Veterinary Microbiology, 157, 246– 250. Agroscope, 2006. Apports alimentaires recommandés et tables de la valeur nutritive pour les ruminant. Available online: www.agroscope.admin.ch/futtermitteldatenbank/04834/index.html?lang=gr (accessed on June 2013). Agroscope, 2009. Apports alimentaires recommandés et tables de la valeur nutritive pour les ruminant. Available online: www.agroscope.admin.ch/futtermitteldatenbank/04834/index.html?lang=gr (accessed on June 2013). Chapter 11, Apports alimentaires recommandés pour le mouton. Agroscope, 2011. Apport en zinc chez le porc. ALP-Actuel n°40. Ahola JK, Baker DS, Burns PD, Mortimer RG, Enns RM, Whittier JC, Geary TW and Engle TE, 2004. Effect of copper, zinc, and manganese supplementation and source on reproduction, mineral status, and performance in grazing beef cattle over a two-year period. Journal of Animal Science, 82, 2375– 2383. Allen JG, Masters HG, Peet RL, Mullins KR, Lewis RD, Skirrow SZ and Fry J, 1983. Zinc toxicity in ruminants. Journal of Comparative Pathology, 93, 363– 377. AMCRA (AntiMicrobial Consumption and Resistance in Animals), 2012. L'usage d'oxyde de zinc (ZnO) chez les porcelets sevrés en belgique en prévention de la diarrhée de sevrage. Available online: www.amcra.be/sites/default/files/bestanden/avis%20ZnO%20porcelets%20sevre%CC%81s%20final%20-%20FR.pdf. Ammerman CB, Henry PR and Miles RD, 1998. Supplemental organically-bound mineral compounds in livestock nutrition. In: Recent advances in animal nutrition Eds PC Garnsworthy and J. Wiseman Nottingham University Press, Nottingham, UK. Andreini C, Banci C, Bertini I and Rosato A, 2006. Counting the zinc-proteins encoded in the human genome. Journal of Proteome Research, 5, 196– 201. ANSES (French Agency for Food, Environmental and Occupational Health & Safety), 2013. Opinion of the on the use of zinc oxide in the diet of piglets at weaning to reduce the use of antibiotics. ANSES Opinion. Request No. 2012-SA-0067 Available online: www.anses.fr/sites/default/files/documents/ALAN2012sa0067Ra.pdf. Ao T, Pierce JJ, Power R, Dawson KA, Pescatore AJ, Cantor AH and Ford MJ, 2006. Evaluation of Bioplex Zn as an organic zinc source for chicks. International Journal of Poultry Science, 5, 808– 811. Aoyagi S and Baker DH, 1993. Nutritional evaluation of copper-lysine and zinc-lysine complexes for chicks. Poultry Science, 72, 165– 171. Apines MJ, Satoh S, Kiron V, Watanabe T, Nasu N and Fujita S, 2001. Bioavailability of amino acids chelated and glass embedded zinc to rainbow trout, Oncorhynchus mykiss, fingerlings. Aquaculture Nutrition, 7, 221– 228. Arelovich HM, Owens FN, Horn GW and Vizcarra, JA, 2000. Effects of supplemental zinc and manganese on ruminal fermentation, forage intake, and digestion by cattle fed prairie hay and urea. Journal of Animal Science, 78, 2972– 2979. Arrayet JL, Oberbauer AM, Famula TR, Garnett I, Oltjen JW, Imhoof J, Kehrli ME and Graham TW, 2002. Growth of Holstein calves from birth to 90 days: the influence of dietary zinc and BLAD status. Journal of Animal Science, 80, 545– 552. Baeverfjord G, Fjelldal PG, Albrektsen S, Hatlen B, Denstadli V, Ytteborg E, Takle H, Lock E-J, Berntssen MHG, Lundebye A-K, Åsgård T and Waagbø R, 2013. Mineral nutrition and bone health in farmed salmonids – a review. Aquaculture Nutrition (submitted). Batal AB and Dale N, 2008. Feedstuffs September 10, p. 16. Available online: fdsmagissues.feedstuffs.com/fds/Reference_issue_2010/Reference_issue_2009/Section2_2008.pdf. Batal AB, Parr TM and Baker DH, 2001. Zinc bioavailability in tetrabasic zinc chloride and the dietary zinc requirement of young chicks fed a soy concentrate diet. Poultry Science, 80, 87– 90. Bedford MR and Schulze H, 1998. Exogenous enzymes for pigs and poultry. Nutrition Research Reviews, 11, 91– 114. Biehl RR, Baker DH and De Luca HF, 1995. α-Hydroxylated cholecalciferol compounds act additively with microbial phytase to improve phosphorus, zinc and manganese utilization in chicks fed soybased diets. The Journal of Nutrition, 125, 2407– 2416. Bikker P, Jongbloed AW, Verheijen R, Binnendijk GP and Van Diepen H, 2011. Zinc requirements of weaned pigs. Report 274. Wageningen UR Livestock Research, p. 31. Bikker P, Van Diepen JTM, Binnendijk GP and Jongbloed AW, 2012a. Phytase inclusion in pig diets improves zinc status but its effect on copper availability is inconsistent. Journal of Animal Science, 90 (Suppl. 4), 197– 199. Bikker P, Jongbloed AW and Thissen JTNM, 2012b. Meta-analysis of effects of microbial phytase on digestibility and bioavailability of copper and zinc in growing pigs. Journal of animal science, 90 Suppl 4, 134– 136. Blaabjerg K, Jørgensen H, Tauson A and Poulsen H, 2010. Heat-treatment, phytase and fermented liquid feeding affect the presence of inositol phosphates in ileal digesta and phosphorus digestibility in pigs fed a wheat and barley diet. Animal, 4, 1– 10. Blalock TL and Hill CH, 1988. Studies on the role of iron in zinc toxicity in chicks. Biological Trace Element Research, 17, 17– 29. Blank R, Naatjes M, Baum C, Kohling K, Ader P, Roser U and Susenbeth A, 2012. Effects of formic acid and phytase supplementation on digestibility and use of phosphorus and zinc in growing pigs. Journal of Animal Science, 90 (Suppl. 4), 212– 214. Bodar CWM, Pronk MEJ and Sijm DTHM, 2005. The European Union Risk Assessment on Zinc and Zinc Compounds: The Process and the Facts. Integrated Environmental Assessment and Management, 1, 301– 319. Bouron A and Oberwinkler J, 2013. Contribution of calcium-conducting channels to the transport of zinc ions. Pflügers Archiv - European Journal of Physiology. Published online: 30 May 2013. Brasse-Lagnel C, Karim Z, Letteron P, Bekri S, Bado A and Beaumont C, 2011. Intestinal DMT1 cotransporter is down-regulated by hepcidin via proteasome internalization and degradation. Gastroenterology, 140, 1261– 1271. Brenes A, Viveros A, Arija I, Centeno C, Pizarro M and Bravo C, 2003. The effect of citric acid and microbial phytase on mineral utilization in broiler chicks. Animal Feed Science and Technology, 110, 201– 219. Brewer GJ, Dick RD, Schall W, Yuzbas, Thomas J and Padgett G, 1992. Use of zinc acetate to treat copper toxicosis in dogs. Journal of American Veterinary Medical Association, 201, 564– 568. Bridges CH, and Harris ED, 1988. Experimentally induced cartilaginous fractures (osteochondritis dissecans) in foals fed low-copper diets. Journal of American Veterinary Medical Association, 193, 215– 221. Bridges CH and Mofitt PG, 1990. Influence of variable content of dietary zinc on copper metabolism of weanling foals. American Journal Veterinary Research, 51, 275– 280. Bundesministerium für Ernährung, Landwirstchaft und Verbraucherschutz, 2008. Nationale Verzehrs Studie II. Max Rubner-Institut. Available online: www.was-esseich.de/uploads/media/NVSII_Abschlussbericht_Teil_2.pdf. Cao J, Henry PR, Guo R, Holwerda RA, Toth JP, Littell RC, Miles RD and Ammerman CB, 2000. Chemical characteristics and relative bioavailability of supplemental organic zinc sources for poultry and ruminants. Journal of Animal Science, 78, 2039– 2054. Carlson D and Poulsen H, 2003. Phytate degradation in soaked and fermented liquid feed – effect of diet, time of soaking, heat treatment, phytase activity, pH and temperature. Animal Feed Science and Technology, 103, 141– 154. Carlson D, Sehested J and Poulsen HD, 2006. Zinc reduces the electrophysiological responses in vitro to basolateral receptor mediated secretagogues in piglet small intestinal epithelium. Comprehensive Biochemistry and Physiology 144, 514– 519. Carlson D, Sehested J, Feng Z and Poulsen HD, 2007. Zinc is involved in regulation of secretion from intestinal epithelium in weaned piglets. Livestock Science, 108, 45– 48. Carlson MS, Hill GM and Link JE, 1999. Early- and traditionally weaned nursery pigs benefit from phase-feeding pharmacological concentrations of zinc oxide: effect on metallothionein and mineral concentrations, Journal of Animal Science, 77, 1199– 1207. Cavaco LM, Hasman H, Stegger M, Andersen PS, Skov R, Fluit AC, Ito T and Aarestrup FM, 2010. Cloning and occurrence of czrC, a gene conferring cadmium and zinc resistance in Methicillin-Resistant Staphylococcus aureus CC398 isolates. Antimicrobial Agents and Chemotherapy, 54, 3605– 3608. Cavaco LM, Hasman H and Aarestrup FM, 2011. Zinc resistance of Staphylococcus aureus of animal origin is strongly associated with methicillin resistance. Veterinary Microbiology, 150, 344– 348. Cheng ZJJ and Hardy RW, 2003. Effects of extrusion and expelling processing, and microbial phytase supplementation on apparent digestibility coefficients of nutrients in full-fat soybeans for rainbow trout (Oncorhynchus mykiss). Aquaculture, 218, 501– 514. Clearwater SJ, Farag AM and Meyer JS, 2002. Bioavailability and toxicity of dietborne copper and zinc to fish. Comparative Biochemistry and Physiology - Part C: Toxicology & Pharmacology 132, 269– 313. Cope CM, Mackenzie AM, Wilde D and Sinclair LA 2009. Effects of level and form of dietary zinc on dairy cow performance and health. Journal of Dairy Science, 92, 2128– 2135. Cunningham JE and Kovacic JP, 2009. The ubiquitous role of zinc in health and disease. Journal of Veterinary and Emergency Critical Care, 19, 215– 240. CVB (Centraal veevoederbureau), 2005. Handleiding Mineralenvooziening Rundvee, Schapen, Geiten. Centraal veevoederbureau, Lelystad, The Netherlands. CVB (Centraal veevoederbureau), 2007. Feed Tables. Productschap Diervoeding. Centraal veevoederbureau, Lelystad, The Netherlands. Cymbaluk NF, Smart ME, 1993. A review of possible metabolic relationships of copper to equine bone diseases. Equine Veterinary Journal, Suppl. 16, 19– 26. D-A-CH (Deutsche Gesellschaft für Ernährung, Österreichische Gesellschaft für Ernährung, Schweizerische Gesellschaft für Ernährungsforschung, Schweizerische Vereinigung für Ernährung), 2013. Referenzwerte für die Nährstoffzufuhr. Neuer Umschau Buchverlag, Neustadt an der Weinstraße, Germany, 292 pp. Denstadli V, Skrede A, Krogdahl Å, Sahlstrøm S and Storebakken T, 2006. Feed intake, growth, feed conversion, digestibility, enzyme activities and intestinal structure in Atlantic salmon (Salmo salar L.) fed graded levels of phytic acid. Aquaculture, 256, 365– 376. Dewar, W A, Wight PA, Pearson RA and Gentle MJ, 1983. Toxic effects of high concentrations of zinc oxide in the diet of the chick and laying hen. British Poultry Science, 24, 397– 404. DH (Department of Health), 1991. Dietary reference values for food energy and nutrients for the United Kingdom. Report of the Panel on Dietary Reference Values of the Committee on Medical Aspects of Food Policy. HM Stationary Office, London, UK, 212 pp. Donovan A, Brownlie A, Zhou Y, Shepard J, Pratt SJ, Moynihan J, Paw BH, Drejer A, Barut B, Zapata A, Law TC, Brugnara C, Lux SE, Pinkus GS, Pinkus JL, Kingsley PD, Palis J, Fleming MD, Andrews NC and Zon LI, 2000. Positional cloning of zebrafish ferroportin1 identifies a conserved vertebrate iron exporter. Nature, 403, 776– 781. Durand M and Kawashima R, 1980. Influence of minerals in rumen microbial digestion. In: Digestive Physiology and metabolism in the ruminant. Eds Y Ruckenbush and P. Thivend AVI Publ. Co., Westport, CT, USA, 375– 408. Eamens GJ, Macadam JF, Laing EA, 1984. Skeletal abnormalities in young horses associated with zinc toxicity and hypocuprosis. Australian Veterinary Journal, 91, 205– 207. EC (European Commission), 1993. Reports of the Scientific Committee for Food of the European Community. Thirty-first series. Nutrient and energy intakes for the European Community. Commission of the European Communities, Luxembourg. Available online: ec.europa.eu/food/fs/sc/scf/out89.pdf. EC (European Commission), 2003a. Opinion of the Scientific Committee for Animal Nutrition on the use of zinc in feedingstuffs. Available online: ec.europa.eu/food/fs/sc/scan/out120_en.pdf. EC (European Commission), 2003b. Opinion of the Scientific Committee on Food on the Tolerable Upper Intake Level of Zinc. Available online: ec.europa.eu/food/fs/sc/scf/out177_en.pdf. Edwards HM and Baker DH, 1999. Bioavailability of zinc in several sources of zinc oxide, zinc sulphate and zinc metal. Journal of Animal Science, 77, 2730– 2735. Edwards HM and Baker DH, 2000. Zinc bioavailability in soybean meal. Journal of Animal Science, 78, 1017– 1021. Edwards HM, Boling SD, Emmert JL and Baker DH, 1998. Bioavailability of zinc in two zinc sulphate by-products of the galvanizing industry. Poultry Science, 77, 1546– 1549. Eeckhout W and Paepe M, 1994. Total phosphorus, phytate-phosphorus and phytase activity in plant feedstuffs. Animal Feed Science and Technology, 47, 19– 29. EFSA NDA Panel (EFSA Panel on Dietetic Products, Nutrition, and Allergies), 2010. Scientific Opinion on principles for deriving and applying Dietary Reference Values. EFSA Journal 2010; 8(3):1458, 30 pp. doi:10.2903/j.efsa.2010.1458. EFSA FEEDAP Panel (EFSA Panel on Additives and Products or Substances used in Animal Feed), 2012a. Scientific Opinion on safety and efficacy of zinc compounds (E6) as feed additive for all species: zinc sulphate monohydrate, based on a dossier submitted by Grillo-Werke AG/EMFEMA. EFSA Journal 2012; 10(6):2734, 23 pp. doi:10.2903/j.efsa.2012.2734. EFSA FEEDAP Panel (EFSA Panel on Additives and Products or Substances used in Animal Feed), 2012b. Scientific Opinion on safety and efficacy of zinc compounds (E6) as feed additive for all species: zinc sulphate monohydrate, based on a dossier submitted by Helm AG. EFSA Journal 2012; 10(2):2572, 22 pp. doi:10.2903/j.efsa.2012.2572. EFSA FEEDAP Panel (EFSA Panel on Additives and Products or Substances used in Animal Feed), 2012c. Scientific Opinion on safety and efficacy of zinc compounds (E6) as feed additives for all animal species: Zinc chelate of amino acids hydrate, based on a dossier submitted by Zinpro Animal Nutrition Inc. EFSA Journal 2012; 10(3):2621, 22 pp. doi:10.2903/j.efsa.2012.2621. EFSA FEEDAP Panel (EFSA Panel on Additives and Products or Substances used in Animal Feed), 2012d. Scientific Opinion on safety and efficacy of zinc compounds (E6) as feed additive for all animal species: Zinc oxide, based on a dossier submitted by Grillo Zinkoxid GmbH/EMFEMA. EFSA Journal 2012; 10(11):2970, 24 pp. doi:10.2903/j.efsa.2012.2970. EFSA FEEDAP Panel (EFSA Panel on Additives and Products or Substances used in Animal Feed), 2012e. Guidance for establishing the safety of additives for the consumer. EFSA Journal 2012; 10(1):2537, 12 pp. doi:10.2903/j.efsa.2012.2537. EFSA FEEDAP Panel (EFSA Panel on Additives and Products or Substances used in Animal Feed), 2013. Scientific opinion on the characterisation of zinc compound 'Zinc chelate of amino acids, hydrate (Availa Zinc)' as a feed additive for all animal species. EFSA Journal 2013; 11(10):3369, 7 pp. doi:10.2903/j.efsa.2013.3369. Eid AE and Ghonim SI, 1994. Dietary zinc requirement of fingerling Oreochromis niloticus. Aquaculture, 119, 259– 264. Eisemann JH, Pond WG and Thonney ML, 1979. Effect of dietary zinc and copper on performance and tissue mineral and cholesterol concentrations in swine. Journal of Animal Science, 48, 1123– 1128. EU RAR (European Union Risk Assessment Report) Zinc metal, 2010. Available online: publications.jrc.ec.europa.eu/repository/bitstream/111111111/15064/1/lbna24587enn.pdf. Fadayifar A, Aliarabi H, Tabatabaei MM, Zamani P, Bahari A, Malecki M and Desfoulian AH, 2012. Improvement in lamb performance on barley based diet supplemented with zinc. Livestock Science, 144, 285– 289. Fard R, Heuzenroeder M and Barton M, 2011. Antimicrobial and heavy metal resistance in commensal enterococci isolated from pigs. Veterinary Microbiology, 148, 276– 282. FEDIAF (European Pet Food Industry Federation), 2012. Nutritional guidelines for complete and complementary pet food for cats and dogs. Brussels, Belgium. Feng L, Tan LN, Liu Y, Jiang J, Jiang WD, Hu K, Li SH and Zhou XQ, 2011. Influence of dietary zinc on lipid peroxidation, protein oxidation and antioxidant defence of juvenile Jian carp (Cyprinus caprio var. Jian). Aquaculture Nutrition, 17, 875– 882. Feng Z, Carlson D and Poulsen HD, 2006. Zinc attenuates forskolin-stimulated electrolyte secretion without involvement of the enteric nervous system in small intestinal epithelium from weaned piglets. Comparative Biochemistry and Physiology, 145, 328– 333. Fleming RE and Sly WS, 2001). Hepcidin: A putative iron-regulatory hormone relevant to hereditary hemochromatosis and the anemia of chronic disease. Proceedings of the National Academy of Sciences of the USA, 98, 8160– 8162. Flynn A, Hirvonen T, Mensink GBM, Ocké MC, Serra-Majem L, Stos K, Szponar L, Tetens I, Turrini A, Fletcher R and Wildeman T, 2009. Intake of selected nutrients from foods, from fortification and from supplements in various European countries. Food and Nutrient Research, 53, 8– 51. Fosmire GJ, 1990. Zinc toxicity. American Journal of Clinical Nutrition, 51, 225– 227. Fountoulaki E, Morgane H, Rigos G, Antigoni V, Mente E, Sweetman J and Nengas I, 2010. Evaluation of zinc supplementation in European sea bass (Dicentrarchus labrax) juvenile diets. Aquaculture Research, 41, 208– 216. Froetschel MA, Martin AC, Amos HE and Evans JJ, 1990. Effects of zinc sulphate concentration and feeding frequency on ruminal prtotozoal numbers, fermentation patterns and amino acid passage in steers. Journal of Animal Science, 68, 2874– 2884. Fukada T and Kambe T, 2011. Molecular and genetic features of zinc transporters in physiology and pathogenesis, Metallomics, 3, 662– 674. Gaither LA and Eide DJ, 2000. Functional expression of the human hZIP2 zinc transporter. The Journal of Biological Chemistry, 275, 5560– 5564. Gallaher DD, Gallaher CM, Shulman S, McElhome A, Brokken KA and Shurson G, 2000. Biovailability of different sources of protected zinc. In: Trace elements in man and animals 10. Eds Roussel et al. Kluwer Academic/Plenum Publishers, New York, USA. Garcia-Contreras A, De Loera Y, Garcia-Artiga C, Palomo A, Guevara JA, Herrera-Haro J, López-Fernández A, Johnston S and Gosálvez J, 2011. Elevated dietary intake of Zn-methionate is associated with increased sperm DNA fragmentation in the boar. Reproductive Toxicology, 86, 2582– 2589. Garg AK, Mudgal V and Dass RS 2008. Effect of organic zinc supplementation on growth, nutrient utilization and mineral profile in lambs. Animal Feed Science and Technology, 144, 82– 96. Gatlin DMI and Phillips HF, 1989. Dietary calcium, phytate and zinc interactions in channel catfish. Aquaculture, 79, 259– 266. Gatlin DMI, Phillips HF and Torrans EL, 1989. Effects of various levels of dietary copper and zinc on channel catfish. Aquaculture, 76, 127– 134. Gatlin DMI and Wilson RP, 1983. Dietary zinc requirement of fingerling channel catfish. Journal of Nutrition 113, 630– 635. Gatlin DMI and Wilson RP, 1984. Zinc supplementation of practical channel catfish diets. Aquaculture, 41, 31– 36. GfE (Gesellschaft für Ernährungsphysiologie), 1989. Energie- und Nährstoffbedarf Hunde. DLG Verlag, Frankfurt am Main, Deutschland. GfE (Gesellschaft für Ernährungsphysiologie), 1994. Empfehlungen zur Energie- und Nährstoffversorgung der Pferde. DLG Verlag, Frankfurt am Main, Deutschland. GfE (Gesellschaft für Ernährungsphysiologie), 1995. Empfehlungen zur Energie- und Nährstoffversorgung der Mastrinder. DLG Verlag, Frankfurt am Main, Deutschland. GfE (Gesellschaft für Ernährungsphysiologie), 1999. Empfehlungen zur Energie- und Nährstoffversorgung der Legehennen und Masthühner. DLG Verlag, Frankfurt am Main, Deutschland. GfE (Gesellschaft für Ernährungsphysiologie), 2001. Empfehlungen zur Energie- und Nährstoffversorgung der Milchkühe und Aufzuchtrinder. DLG Verlag, Frankfurt am Main, Deutschland. GfE (Gesellschaft für Ernährungsphysiologie), 2003. Empfehlungen zur Energie- und Nährstoffversorgung der Ziegen. DLG Verlag, Frankfurt am Main, Deutschland. GfE (Gesellschaft für Ernährungsphysiologie), 2004. Empfehlungen zur Energie- und Nährstoffversorgung der Mastputen. Proceedings of the Society of Nutrition Physiology 13, 199– 233. GfE (Gesellschaft für Ernährungsphysiologie), 2006. Empfehlungen zur Energie- und Nährstoffversorgung von Schweinen. DLG Verlag, Frankfurt am Main, Deutschland. Grider A, Mouat MF, Mauldin EA and Casal ML, 2007. Analysis of the liver soluble proteome from bull terriers affected with inherited lethal acrodermatitis. Molecular Genetics and Metabolism, 92, 249– 257. Grün M, Anke M, Hennig A, Seffner W, Partschefeld M, Flachowsky and Groppel B, 1978. Überhöhte orale Eisengaben an Schafe. Archiv für Tierernaehrung, 28, 341– 347. Gunshin H, Mackenzie B, Berger UV, Gunshin Y, Romero MF, Boron WF, Nussberger S, Gollan JL and Hediger MA, 1997. Cloning and characterization of a mammalian proton-coupled metal-ion transporter. Nature, 388, 482– 488. Hall AC, Young BW and Bremner I, 1979. Intestinal metallothionein and the mutual antagonism between copper and zinc in the rat. Journal of Inorganic Biochemistry, 11, 57– 66. Hambidge M, 2000. Human zinc deficiency. Journal of Nutrition, 130, 1344S– 1349S. Hamre K, Srivastava A, Rønnestad I, Mangor-Jensen A. and Stoss J, 2008. Several micronutrients in the rotifer Brachionus sp. may not fulfil the nutritional requirements of marine fish larvae. Aquaculture Nutrition, 14, 51– 60. Hamre K, Yufera M, Rønnestad I, Boglione C, Conceicao LEC and Izquierdo M, 2013. Fish larval nutrition and feed formulation: knowledge gaps and bottlenecks for advances in larval rearing Reviews in Aquaculture, 5, 26– 58. Hamre K, Yufera M, Rønnestad I, Boglione C, Conceicao LEC and Izquierdo M, 2013. Fish larval nutrition and feed formulation: knowledge gaps and bottlenecks for advances in larval rearing Reviews in Aquaculture, 5, 26– 58. Han Y-K and Thacker PA, 2010. Effects of antibiotics, zinc oxide or a rare earth mineral-yeast product on performance, nutrient digestibility and serum parameters in weanling pigs. Asian-Australian Journal of Animal Science, 23, 1057– 1065. Hedemann MS, Jensen BB and Poulsen HD, 2006. Influence of dietary zinc and copper on digestive enzyme activity and intestinal morphology in weaned pigs. Journal of Animal Science, 84, 3310 3320. Helland S, Denstadli V, Eckhard Witten P, Kjelde K, Storebakken T, Skrede A, Åsgård A and Bæverfjord G, 2006. Hyper dense vertebrae and mineral content in Atlantic salmon (Salmo salar L.) fed diets with graded levels of phytic acid. Aquaculture, 261, 603– 614. Henry PR, Littell RC and Ammerman CB, 1997. Effect of high dietary zinc concentration and length of zinc feeding on feed intake and tissue zinc concentration in sheep. Animal Feed Science and Technology, 66, 237– 245. Hensel P, 2010. Nutrition and skin diseases in veterinary medicine. Clinics of Dermatology, 28, 686– 693. Heo JM, Kim JC, Hansen CF, Mullan BP, Hampson DJ and Pluske JR, 2010. Effects of dietary protein level and zinc oxide supplementation on performance responses and gastrointestinal tract characteristics in weaner pigs challenged with an enterotoxigenic strain of Escherichia coli. Animal Production Science, 50, 827– 836. Hill GM and Miller ER, 1983. Effect of dietary zinc levels on the growth and development of the gilt. Journal of Animal Science, 57, 106– 113. Hill GM, Ku PK, Miller ER, Ullrey DE, Losty TA and O'Dell BL, 1983. A copper deficiency in neonatal pigs induced by a high zinc maternal diet. The Journal of Nutrition, 113, 867– 872. Hoenderop JGG and Bindels RJM, 2008. Calciotropic and Magnesiotropic TRP
Referência(s)