Hybrid Reynolds-Averaged Navier–Stokes/Large-Eddy Simulation Modeling Based on a Low-Reynolds-Number k-ω Model
2016; American Institute of Aeronautics and Astronautics; Volume: 54; Issue: 12 Linguagem: Inglês
10.2514/1.j054179
ISSN1533-385X
AutoresSebastian Arvidson, Lars Davidson, Shia-Hui Peng,
Tópico(s)Wind and Air Flow Studies
ResumoNo AccessTechnical NoteHybrid Reynolds-Averaged Navier–Stokes/Large-Eddy Simulation Modeling Based on a Low-Reynolds-Number k-ω ModelSebastian Arvidson, Lars Davidson and Shia-Hui PengSebastian ArvidsonChalmers University of Technology, SE-412 96 Gothenburg, Sweden*Ph.D. Student, Department of Applied Mechanics; also Systems Engineer, Propulsion Aerodynamics and Performance, Saab AB, Aeronautics, SE-581 88 Linköping, Sweden.Search for more papers by this author, Lars DavidsonChalmers University of Technology, SE-412 96 Gothenburg, Sweden†Professor, Department of Applied Mechanics.Search for more papers by this author and Shia-Hui PengChalmers University of Technology, SE-412 96 Gothenburg, Sweden‡Professor, Department of Applied Mechanics; also Research Director, FOI–Swedish Defence Research Agency, SE-164 90 Stockholm, Sweden.Search for more papers by this authorPublished Online:4 Oct 2016https://doi.org/10.2514/1.J054179SectionsRead Now ToolsAdd to favoritesDownload citationTrack citations ShareShare onFacebookTwitterLinked InRedditEmail About References [1] Peng S.-H., Davidson L. and Holmberg S., “A Modified Low-Reynolds-Number k−ω Model for Recirculating Flows,” Journal of Fluids Engineering, Vol. 119, No. 4, 1997, pp. 867–875. doi:https://doi.org/10.1115/1.2819510 JFEGA4 0098-2202 CrossrefGoogle Scholar[2] Arvidson S., Peng S.-H. and Davidson L., “Feasibility of Hybrid RANS-LES of Shock/Boundary-Layer Interaction in a Duct,” Progress in Hybrid RANS-LES Modelling, edited by Fu S., Haase W., Peng S.-H. and Schwamborn D., Vol. 117, Notes on Numerical Fluid Mechanics and Multidisciplinary Design, Springer, Berlin, 2012, pp. 245–256. CrossrefGoogle Scholar[3] Bruce P., Babinsky H., Tartinville B. and Hirsch C., “Corner Effect and Asymmetry in Transonic Channel Flows,” AIAA Journal, Vol. 49, No. 11, 2011, pp. 2382–2392. doi:https://doi.org/10.2514/1.J050497 AIAJAH 0001-1452 LinkGoogle Scholar[4] Arvidson S., Davidson L. and Peng S.-H., “Hybrid RANS-LES Modeling Using a Low-Reynolds-Number k−ω Based Model,” AIAA Paper 2014-0225, 2014. LinkGoogle Scholar[5] Arvidson S., Peng S.-H. and Davidson L., “Prediction of Transonic Duct Flow Using a Zonal Hybrid RANS-LES Modeling Approach,” Progress in Hybrid RANS-LES Modelling, edited by Girimaji S., Haase W., Peng S.-H. and Schwamborn D., Vol. 130, Notes on Numerical Fluid Mechanics and Multidisciplinary Design, Springer, New York, 2015, pp. 229–241. CrossrefGoogle Scholar[6] Davidson L. and Peng S.-H., “Hybrid LES-RANS Modelling: A One-Equation SGS Model Combined with a k−ω Model for Predicting Recirculating Flows,” International Journal for Numerical Methods in Fluids, Vol. 43, No. 9, 2003, pp. 1003–1018. doi:https://doi.org/10.1002/(ISSN)1097-0363 IJNFDW 0271-2091 CrossrefGoogle Scholar[7] Shur K., Spalart P., Strelets M. and Travin A., “A Hybrid RANS-LES Approach with Delayed-DES and Wall-Modelled LES Capabilities,” International Journal of Heat and Fluid Flow, Vol. 29, No. 6, 2008, pp. 1638–1649. doi:https://doi.org/10.1016/j.ijheatfluidflow.2008.07.001 IJHFD2 0142-727X CrossrefGoogle Scholar[8] Chauvet N., Deck S. and Jaquin L., “Zonal Detached Eddy Simulation of a Controlled Propulsive Jet,” AIAA Journal, Vol. 45, No. 10, 2007, pp. 2458–2473. doi:https://doi.org/10.2514/1.28562 AIAJAH 0001-1452 LinkGoogle Scholar[9] Deck S., “Recent Improvements in the Zonal Detached Eddy Simulation (ZDES) Formulation,” Theoretical and Computational Fluid Dynamics, Vol. 26, No. 6, 2012, pp. 523–550. doi:https://doi.org/10.1007/s00162-011-0240-z TCFDEP 0935-4964 CrossrefGoogle Scholar[10] Hamba F., “Analysis of Filtered Navier–Stokes Equation for Hybrid RANS/LES Simulation,” Physics of Fluids A, Vol. 23, No. 1, 2011, pp. 1–13. doi:https://doi.org/10.1063/1.3549933 PFADEB 0899-8213 Google Scholar[11] Davidson L., “Two-Equation Hybrid RANS-LES Models: A Novel Way to Treat k and ω at the Inlet,” Turbulence Heat, and Mass Transfer, THMT-15, edited by Hanjalić K., Miyauchi T., Borello D., Hadziabdic M. and Venturini P., Begell House, New York, 2015, pp. 1–13. Google Scholar[12] Menter F., “Two-Equation Eddy-Viscosity Turbulence Models for Engineering Applications,” AIAA Journal, Vol. 32, No. 8, 1994, pp. 1598–1605. doi:https://doi.org/10.2514/3.12149 AIAJAH 0001-1452 LinkGoogle Scholar[13] Nikitin N., Nicoud F., Wasistho B., Squires K. and Spalart P., “An Approach to Wall Modeling in Large-Eddy Simulations,” Physics of Fluids, Vol. 12, No. 7, 2000, pp. 1629–1632. doi:https://doi.org/10.1063/1.870414 CrossrefGoogle Scholar[14] Arvidson S., “Assessment and Some Improvements of Hybrid RANS-LES Methods,” Licenciate Thesis, Applied Mechanics, Chalmers Univ. of Technology, Gothenburg, Sweden, 2013. Google Scholar[15] Hoyas S. and Jimenez J., “Reynolds Number Effects on the Reynolds-Stress Budgets in Turbulent Channels,” Physics of Fluids A, Vol. 20, No. 10, 2008, Paper 101511. PFADEB 0899-8213 Google Scholar[16] Greenblatt D., Paschal K., Yao C.-S., Harris J., Schaeffler N. W. and Washburn A. E., “A Separation Control CFD Validation Test Case Part 1: Baseline and Steady Suction,” AIAA Paper 2004-2220, 2004. Google Scholar[17] Greenblatt D., Paschal K., Yao C.-S. and Harris J., “A Separation Control CFD Validation Test Case Part 2: Zero Efflux Oscillatory Blowing,” AIAA Paper 2005-0485, 2005. Google Scholar Previous article Next article
Referência(s)