Artigo Acesso aberto Revisado por pares

Predatory behaviour in synthetic protocell communities

2016; Nature Portfolio; Volume: 9; Issue: 2 Linguagem: Inglês

10.1038/nchem.2617

ISSN

1755-4349

Autores

Yan Qiao, Mei Li, Richard Booth, Stephen Mann,

Tópico(s)

Photoreceptor and optogenetics research

Resumo

Recent progress in the chemical construction of colloidal objects comprising integrated biomimetic functions is paving the way towards rudimentary forms of artificial cell-like entities (protocells). Although several new types of protocells are currently available, the design of synthetic protocell communities and investigation of their collective behaviour has received little attention. Here we demonstrate an artificial form of predatory behaviour in a community of protease-containing coacervate microdroplets and protein–polymer microcapsules (proteinosomes) that interact via electrostatic binding. The coacervate microdroplets act as killer protocells for the obliteration of the target proteinosome population by protease-induced lysis of the protein–polymer membrane. As a consequence, the proteinosome payload (dextran, single-stranded DNA, platinum nanoparticles) is trafficked into the attached coacervate microdroplets, which are then released as functionally modified killer protocells capable of rekilling. Our results highlight opportunities for the development of interacting artificial protocell communities, and provide a strategy for inducing collective behaviour in soft matter microcompartmentalized systems and synthetic protocell consortia. The chemical construction of compartmentalized colloidal objects with biomimetic functions and collective properties is a key challenge in synthetic protocell research. Now, an interacting binary community of protocells has been designed to display artificial predatory behaviour in which protease-containing coacervate microdroplets obliterate a population of proteinosomes, and capture a chemical payload via a simple trafficking process.

Referência(s)