The group of automorphisms of the Fermat curve
2016; Industrial University of Santander; Volume: 34; Issue: 2 Linguagem: Inglês
10.18273/revint.v34n2-2016002
ISSN2145-8472
AutoresMarby Bolaños Ortiz, Maribel Castillo Díaz, Martha Romero Rojas,
Tópico(s)Philosophical Thought and Analysis
ResumoespanolPavlos Tzermias en su articulo group of automorphisms of the Fermat curve(ver [7]), prueba que el grupo de automorfismos de las curvas de Fermat proyectivas en caracteristica 0 es el producto semidirecto de la suma directa de 2 copias del grupo ciclico de orden n y el grupo simetrico de 3 letras. En este articulo se presenta una prueba alternativa de este hecho accesible para alguien con conocimientos basicos en superficies de Riemann y teoria de grupos. Ademas, se incluye la correspondencia geometrica de la accion. EnglishIn his paper, The group of automorphisms of the Fermat curve (see [7]), Tzermias proved that the automorphism group of the projective Fermat curves in characteristic 0 is the semidirect product of the direct sum of 2 copies of the y cyclic group of order n and the symmetri group on 3 letters. In this paper we present an alternative proof of this fact accessible to someone with basic knowledge of Riemann surfaces and group theory. Also we include the geometric correspondence of the action.
Referência(s)