Artigo Revisado por pares

High-Performance Aluminum-Ion Battery with CuS@C Microsphere Composite Cathode

2016; American Chemical Society; Volume: 11; Issue: 1 Linguagem: Inglês

10.1021/acsnano.6b06446

ISSN

1936-086X

Autores

Shuai Wang, Shuqiang Jiao, Junxiang Wang, Haosen Chen, Donghua Tian, Haiping Lei, Daining Fang,

Tópico(s)

Advanced Battery Materials and Technologies

Resumo

On the basis of low-cost, rich resources, and safety performance, aluminum-ion batteries have been regarded as a promising candidate for next-generation energy storage batteries in large-scale energy applications. A rechargeable aluminum-ion battery has been fabricated based on a 3D hierarchical copper sulfide (CuS) microsphere composed of nanoflakes as cathode material and room-temperature ionic liquid containing AlCl3 and 1-ethyl-3-methylimidazolium chloride ([EMIm]Cl) as electrolyte. The aluminum-ion battery with a microsphere electrode exhibits a high average discharge voltage of ∼1.0 V vs Al/AlCl4–, reversible specific capacity of about 90 mA h g–1 at 20 mA g–1, and good cyclability of nearly 100% Coulombic efficiency after 100 cycles. Such remarkable electrochemical performance is attributed to the well-defined nanostructure of the cathode material facilitating the electron and ion transfer, especially for chloroaluminate ions with large size, which is desirable for aluminum-ion battery applications.

Referência(s)
Altmetric
PlumX