Artigo Revisado por pares

Survey of Station-Keeping Techniques for Libration Point Orbits

2017; American Institute of Aeronautics and Astronautics; Volume: 40; Issue: 5 Linguagem: Inglês

10.2514/1.g001850

ISSN

1533-3884

Autores

М. Г. Широбоков, Sergey Trofimov, M Y Ovchinnikov,

Tópico(s)

Aerospace Engineering and Control Systems

Resumo

No AccessSurvey PaperSurvey of Station-Keeping Techniques for Libration Point OrbitsMaksim Shirobokov, Sergey Trofimov and Mikhail OvchinnikovMaksim ShirobokovKeldysh Institute of Applied Mathematics, 125047 Moscow, Russia, Sergey TrofimovKeldysh Institute of Applied Mathematics, 125047 Moscow, Russia and Mikhail OvchinnikovKeldysh Institute of Applied Mathematics, 125047 Moscow, RussiaPublished Online:20 Jan 2017https://doi.org/10.2514/1.G001850SectionsRead Now ToolsAdd to favoritesDownload citationTrack citations ShareShare onFacebookTwitterLinked InRedditEmail About References [1] Farquhar R. W., "The Flight of ISEE-3/ICE: Origins, Mission History, and a Legacy," Journal of the Astronautical Sciences, Vol. 49, No. 1, 2001, pp. 23–74. CrossrefGoogle Scholar[2] Dunham D. W. and Roberts C. E., "Stationkeeping Techniques for Libration-Point Satellites," Journal of the Astronautical Sciences, Vol. 49, No. 1, 2001, pp. 127–144. CrossrefGoogle Scholar[3] Roberts C. E., "Long Term Missions at the Sun–Earth Libration Point L1: ACE, SOHO, and WIND," AAS/AIAA Astrodynamics Specialist Conference, AAS Paper 11-485, Girdwood, AK, 2011. Google Scholar[4] Roberts C. E., "The SOHO Mission L1 Halo Orbit Recovery from the Attitude Control Anomalies of 1998," Proceedings of the Libration Point Orbits and Application, edited by Gómez G., Lo M. W. and Masdemont J. J., World Scientific Publishing Co. Re. Ltd., Singapore, 2003, pp. 171–217. doi:https://doi.org/10.1142/9789812704849_0009 Google Scholar[5] Limon M., Wollack E., Bennett C. L., Halpern M., Hinshaw G., Jarosik N., Kogut A., Meyer S. S., Page L. and Spergel D. N., (eds.), Wilkinson Microwave Anisotropy Probe (WMAP): Explanatory Supplement, NASA/Goddard Space Flight Center, 2003, pp. 4–12. Google Scholar[6] Williams K. E., Lewis G. D., Wilson R. S., Helfrich C. E. and Potts C. L., "Genesis Earth Return: Refined Strategies and Flight Experience," Advances in the Astronautical Sciences, Vol. 120, 2005, pp. 249–268. Google Scholar[7] Williams K., Barden B. T., Howell K. C., Lo M. W. and Wilson R., "Genesis Halo Orbit Station Keeping Design," International Symposium on Space Flight Dynamics, Centre national d'études spatiales, Biarritz, France, 2000. Google Scholar[8] Folta D. C., Pavlak T. A., Haapala A. F., Howell K. C. and Woodard M. A., "Earth–Moon Libration Point Orbit Stationkeeping: Theory, Modeling, and Operations," Acta Astronautica, Vol. 94, No. 1, 2014, pp. 421–433. doi:https://doi.org/10.1016/j.actaastro.2013.01.022 AASTCF 0094-5765 CrossrefGoogle Scholar[9] Herschel Observers' Manual, HERSCHEL-HSC-DOC-0876, Ver. 5.0.3, 2014, http://herschel.esac.esa.int/Docs/Herschel/pdf/observatory.pdf. Google Scholar[10] Collaboration P. and et al., "Planck 2013 Results. I. Overview of Products, and Scientific Results," Astronomy & Astrophysics, Vol. 571, 2014, Paper A21. doi:https://doi.org/10.1051/0004-6361/201321529 Google Scholar[11] Huang H., Zhou W., Meng L., Rao W. and Huang J., "Chang'e-2 Satellite Lagrange L2 Point Mission," 63rd International Astronautical Congress, International Astronautical Federation Paper IAC-12.A3.2B.6, Naples, Italy, 2012. Google Scholar[12] Renk F. and Landgraf M., "Gaia: Trajectory Design with Tightening Constraints," 24th International Symposium on Space Flight Mechanics, Johns Hopkins Univ. Applied Physics Lab., Laurel, MD, 2014, pp. 1–18. Google Scholar[13] Roberts C. E., Case S. and Reagoso J., "Lissajous Orbit Control for the Deep Space Climate Observatory Sun–Earth L1 Libration Point Mission," AAS/AIAA Astrodynamics Specialist Conference, AAS Paper 15-611, Vail, CO, 2015, pp. 1–20. Google Scholar[14] Rudolph A., et al., "LISA Pathfinder Mission Operations Concept and Launch Early Orbit Phase-in-Orbit Experience," SpaceOps Conference, AIAA Paper 2016-2412, 2016. doi:https://doi.org/10.2514/6.2016-2412 Google Scholar[15] Folta D. and Beckman M., "Libration Orbit Mission Design: Applications of Numerical and Dynamical Methods," Proceedings of the Libration Point Orbits and Application, edited by Gómez G., Lo M. W. and Masdemont J. J., World Scientific Publ. Co. Re. Ltd., Singapore, 2002, pp. 85–113. doi:https://doi.org/10.1142/9789812704849_0005 Google Scholar[16] Heuberger H., "Halo Orbit Station Keeping for International Sun-Earth Explorer-C/ISEE-C," AAS/AIAA Astrodynamics Specialist Conference, AAS Paper 77-165, Jackson Hole, WY, 1977. Google Scholar[17] Erickson J. and Glass A., "Implementation of ISEE-3 Trajectory Control," AAS/AIAA Astrodynamics Specialist Conference, AAS Paper 79-128, Provincetown, MA, 1979. Google Scholar[18] Farquhar R. W., Muhonen D. P., Newman C. R. and Heubergerg H. S., "Trajectories and Orbital Maneuvers for the First Libration-Point Satellite," Journal of Guidance, Control, and Dynamics, Vol. 3, No. 6, 1980, pp. 549–554. doi:https://doi.org/10.2514/3.56034 JGCODS 0731-5090 LinkGoogle Scholar[19] Farquhar R. W., Muhonen D. and Church L. C., "Trajectories and Orbital Maneuvers for the ISEE-3/ICE Comet Mission," Journal of the Astronautical Sciences, Vol. 33, No. 3, 1985, pp. 235–254. Google Scholar[20] Gómez G., Llibre J., Matínez R. and Simó C., Dynamics and Mission Design Near Libration Point Orbits, Volume I: Fundamentals: The Case of Collinear Libration Points, Vol. 2, World Scientific, Singapore, 2001, pp. 45–58. Google Scholar[21] Rodriguez J. and Hechler M., "Orbital Aspects of the SOHO Mission Design," Advances in the Astronautical Sciences, Vol. 69, 1989, pp. 347–357. Google Scholar[22] Sharer P., Franz H. and Folta D., "WIND Trajectory Design and Control," International Symposium on Space Flight Dynamics, Centre National d'études spatiales Paper MS95/032, Toulouse, France, 1995. Google Scholar[23] Rohrbaugh D. and Schiff C., "Stationkeeping Approach for the Microwave Anisotropy Probe (MAP)," AAS/AIAA Astrodynamics Specialist Conference, AIAA Paper 2002-4429, 2002. doi:https://doi.org/10.2514/6.2002-4429 LinkGoogle Scholar[24] Howell K. C. and Barden B. T., "Investigation of Biasing Options for the Genesis Mission," Purdue IOM AAE-9840-007 (Purdue Internal Document), 1998. Google Scholar[25] Folta D., Pavlak T. A., Howell K. C., Woodard M. A. and Woodfork D. W., "Stationkeeping of Lissajous Trajectories in the Earth–Moon System with Applications to ARTEMIS," 20th AAS/AIAA Space Flight Mechanics Meeting, AAS Paper 10-113, San Diego, CA, 2010, pp. 193–208. Google Scholar[26] Hou X. Y., Wang H.-H. and Liu L., "On the Station-Keeping and Control of the World Space Observatory/Ultraviolet," Chinese Journal of Astronomy and Astrophysics, Vol. 6, No. 3, 2006, pp. 372–378. doi:https://doi.org/10.1088/1009-9271/6/3/13 CJAAAJ 1009-9271 CrossrefGoogle Scholar[27] Janes L. and Beckman M., "Stationkeeping Maneuvers for the James Webb Space Telescope," Goddard Flight Mechanics Symposium, Goddard Space Flight Center, Greenbelt, MD, 2005. Google Scholar[28] Ikenaga T. and Utashima M., "Study on the Stationkeeping Strategy for the Libration Point Mission," Transactions of the Japan Society for Aeronautical and Space Sciences, Aerospace Technology Japan, Vol. 10, No. ists28, 2012, pp. 11–20. doi:https://doi.org/10.2322/tastj.10.Pd_11 CrossrefGoogle Scholar[29] Borovin G., Ilin I. and Tuchin A., "Quasiperiodic Orbits in the Vicinity of the Sun–Earth L2 Point and Their Implementation in "Spectr-RG" & "Millimetron" Missions," Mathematica Montisnigri, Vol. 30, 2014, pp. 37–45. Google Scholar[30] Ilyin I., "Quasi-Periodic Orbits Around Sun–Earth L2 Libration Point and Their Transfer Trajectories in Russian Space Missions," Ph.D. Thesis, School: Keldysh Institute of Applied Mathematics of RAS, Moscow, 2015, (in Russian). Google Scholar[31] Colombo G., "The Stabilization of an Artificial Satellite at the Inferior Conjunction Point of the Earth–Moon System," Smithsonian Contributions to Astrophysics, Vol. 6, 1963, pp. 213–222. SCATAX 0081-0231 Google Scholar[32] Euler E. A. and Yu E. Y., "Optimal Station-Keeping at Collinear Points," Journal of Spacecraft and Rockets, Vol. 8, No. 5, 1971, pp. 513–516. doi:https://doi.org/10.2514/3.59686 JSCRAG 0022-4650 LinkGoogle Scholar[33] Breakwell J. V., "Investigation of Halo Satellite Orbit Control," NASA TR CR-132858, 1973. Google Scholar[34] Breakwell J. V., Kamel A. A. and Ratner M. J., "Station-Keeping for a Translunar Communication Station," Celestial Mechanics, Vol. 10, No. 3, 1974, pp. 357–373. doi:https://doi.org/10.1007/BF01586864 CLMCAV 0008-8714 CrossrefGoogle Scholar[35] Farquhar R. W., "Far Libration Point of Mercury," Astronautics and Aeronautics, Vol. 5, No. 8, 1967. Google Scholar[36] Farquhar R., "Station-Keeping in the Vicinity of Collinear Libration Points with an Application to a Lunar Communications Problem," Space Flight Mechanics Specialist Symposium, American Astronautical Soc. Paper 66-132, Vol. 11, New York, 1967, pp. 519–535. Google Scholar[37] Farquhar R. W., "The Control and Use of Libration-Point Satellites," NASA TR R-346, 1970. Google Scholar[38] Farquhar R. W., "The Utilization of Halo Orbits in Advanced Lunar Operations," NASA X-551-70-449, 1970. Google Scholar[39] Farquhar R. W., "Limit-Cycle Analysis of a Controlled Libration-Point Satellite," Journal of the Astronautical Sciences, Vol. 17, 1970, pp. 267–291. Google Scholar[40] Farquhar R. W., "Comments on Optimal Controls for Out-of-Plane Motion About the Translunar Libration Point," Journal of Spacecraft and Rockets, Vol. 8, No. 7, 1971, pp. 815–816. doi:https://doi.org/10.2514/3.59728 JSCRAG 0022-4650 LinkGoogle Scholar[41] Farquhar R. W., Muhonen D. P., Newman C. R. and Heuberger H. S., "The First Libration-Point Satellite-Mission Overview and Flight History," AAS/AIAA Astrodynamics Specialist Conference, AAS Paper 79-126, Provincetown, MA, 1979. Google Scholar[42] Farquhar R. W., Muhonen D. P. and Richardson D. L., "Mission Design for a Halo Orbiter of the Earth," Journal of Spacecraft and Rockets, Vol. 14, No. 3, 1976, pp. 170–177. doi:https://doi.org/10.2514/6.1976-810 JSCRAG 0022-4650 Google Scholar[43] Lidov M. L., Lukyanov S. S. and Teslenko N. M., "Space Probe in a Neighborhood of the Lunar Libration Point" L2," Keldysh Institute Preprints, No. 116, 1974 (in Russian). Google Scholar[44] Lidov M. L. and Lukianov S. S., "Statistical Estimates in the Control Problem for Motion of a Space Vehicle in the Vicinity of a Collinear Libration Point," Cosmic Research, Vol. 14, No. 6, 1977, pp. 785–797. CSCRA7 0010-9525 Google Scholar[45] Lidov M. L. and Lyahova V., "The Guaranteeing Synthesis of Control for Stabilization of the Motion of a Space Vehicle in the Vicinity of Unstable Libration Points," Kosmicheskie Issledovaniya, Vol. 30, No. 5, 1992, pp. 579–595 (in Russian). KOISAW 0023-4206 Google Scholar[46] Kogan A. Y., "An Optimal Program of Impulse Corrections of Unstable Periodic Orbits," Kosmicheskie Issledovaniya, Vol. 30, No. 5, 1992, pp. 712–714 (in Russian). KOISAW 0023-4206 Google Scholar[47] Elyasberg P. Y. and Timokhova T. A., "Control of Spacecraft Motion in Neighborhood of Collinear Libration Center in Restricted Elliptical Three-body Problem," Kosmicheskie Issledovaniya, Vol. 24, No. 4, 1986, pp. 497–512 (in Russian). KOISAW 0023-4206 Google Scholar[48] Gordon S. C., "Comparison of Station-Keeping Algorithms for an Interior Libration Point Orbit in the Sun–Earth+Moon Elliptic Restricted Three-Body Problem," Final Report Air Force Academy, CO., USAFA-TR-91-13. Google Scholar[49] Canalias E., Gómez G., Marcote M. and Masdemont J. J., "Assessment of Mission Design Including Utilization of Libration Points and Weak Stability Boundaries," Ariadna Final Rept. 03-4103a, Dept. de Matematica Aplicada, Univ. Politecnica de Catalunya and Dept. de Matematica Aplicada, Univ. of Barcelona, Barcelona, Spain, 2004. Google Scholar[50] Folta D. and Vaughn F., "A Survey of Earth–Moon Libration Orbits: Stationkeeping Strategies and Intra-Orbit Transfers," AIAA/AAS Astrodynamics Specialist Conference and Exhibit, AIAA Paper 2004-4741, 2004. doi:https://doi.org/10.2514/6.2004-4741 LinkGoogle Scholar[51] Koon W., Lo M., Marsden J. and Ross S., Dynamical Systems, the Three-Body Problem and Space Mission Design, Springer–Verlag, Berlin, 2008, pp. 26–34. Google Scholar[52] Markeev A., Libration Points in Celestial Mechanics and Cosmic Dynamics, Nauka, Moscow, 1978, pp. 132–185 (in Russian). Google Scholar[53] Meyer K. R., Hall G. R. and Offin D. C., Introduction to Hamiltonian Dynamical Systems and the N-Body Problem, Springer–Verlag, Berlin, 2009, p. 219–220. doi:https://doi.org/10.1007/978-0-387-09724-4 Google Scholar[54] Moser J., "On the Generalization of a Theorem of A. Liapounoff," Communications on Pure and Applied Mathematics, Vol. 11, No. 2, 1958, pp. 257–271. doi:https://doi.org/10.1002/(ISSN)1097-0312 CPMAMV 0010-3640 CrossrefGoogle Scholar[55] Doedel E. J., Romanov V. A., Paffenroth R. C., Keller H. B., Dichmann D. J., Galán-Vioque J. and Vanderbauwhede A., "Elemental Periodic Orbits Associated with the Libration Points in the Circular Restricted 3-Body Problem," International Journal of Bifurcation and Chaos, Vol. 17, No. 8, 2007, pp. 2625–2677. doi:https://doi.org/10.1142/S0218127407018671 IJBEE4 0218-1274 CrossrefGoogle Scholar[56] Gómez G., Llibre J., Matínez R. and Simó C., Dynamics and Mission Design Near Libration Point Orbits, Volume I: Fundamentals: The Case of Collinear Libration Points, Vol. 2, World Scientific, Singapore, 2001, p. 62–68. Google Scholar[57] Gurfil P. and Meltzer D., "Stationkeeping on Unstable Orbits: Generalization to the Elliptic Restricted Three-Body Problem," Journal of the Astronautical Sciences, Vol. 54, No. 1, 2006, pp. 29–51. doi:https://doi.org/10.1007/BF03256475 CrossrefGoogle Scholar[58] Feller W., An Introduction to Probability Theory and Its Applications, 3rd ed., Vol. 1, Wiley, New York, 1968, pp. 243–244, Sec. X. Google Scholar[59] Renault C. A. and Scheeres D. J., "Statistical Analysis of Control Maneuvers in Unstable Orbital Environments," Journal of Guidance, Control, and Dynamics, Vol. 26, No. 5, 2003, pp. 758–769. doi:https://doi.org/10.2514/2.5110 JGCODS 0731-5090 LinkGoogle Scholar[60] Gustafson E. D. and Scheeres D. J., "Optimal Timing of Control-Law Updates for Unstable Systems with Continuous Control," Journal of Guidance, Control, and Dynamics, Vol. 32, No. 3, 2009, pp. 878–887. doi:https://doi.org/10.2514/1.38570 JGCODS 0731-5090 LinkGoogle Scholar[61] Grebow D. J., Ozimek M. T., Howell K. C. and Folta D. C., "Multibody Orbit Architectures for Lunar South Pole Coverage," Journal of Spacecraft and Rockets, Vol. 45, No. 2, 2008, pp. 344–358. doi:https://doi.org/10.2514/1.28738 JSCRAG 0022-4650 LinkGoogle Scholar[62] Heppenheimer T., "Optimal Controls for Out-of-Plane Motion about the Translunar Libration Point," Journal of Spacecraft and Rockets, Vol. 7, No. 9, 1970, pp. 1088–1092. doi:https://doi.org/10.2514/3.59652 JSCRAG 0022-4650 LinkGoogle Scholar[63] Wiesel W. and Shelton W., "Modal Control of an Unstable Periodic Orbit," Journal of the Astronautical Sciences, Vol. 31, 1983, pp. 63–76. Google Scholar[64] Simó C., Gómez G., Llibre J. and Martnez R., "Station Keeping of a Quasiperiodic Halo Orbit Using Invariant Manifolds," Second International Symposium on Spacecraft Flight Dynamics, ESA, 1986, pp. 65–70. Google Scholar[65] Simó C., Gómez G., Llibre J., Martnez R. and Rodriguez J., "On the Optimal Station Keeping Control of Halo Orbits," Acta Astronautica, Vol. 15, No. 6, 1987, pp. 391–397. doi:https://doi.org/10.1016/0094-5765(87)90175-5 AASTCF 0094-5765 CrossrefGoogle Scholar[66] Teschl G., Ordinary Differential Equations and Dynamical Systems, American Mathematical Soc., Pawtucket, RI, 2012, p. 91–97. CrossrefGoogle Scholar[67] Keeter T. M., "Station-Keeping Strategies for Libration Point Orbits: Target Point and Floquet Mode Approaches," Master's Thesis, School of Aeronautics and Astronautics, Purdue Univ., West Lafayette, Indiana, 1994. Google Scholar[68] Gómez G., Howell K. C., Simó C. and Masdemont J. J., "Station-Keeping Strategies for Translunar Libration Point Orbits," AAS/AIAA Spaceflight Mechanics Conference, AAS Paper 98-168, Monterey, CA, 1998. Google Scholar[69] Chen M.-S. and Chen Y.-Z., "Static Output Feedback Control for Periodically Time-Varying Systems," IEEE Transactions on Automatic Control, Vol. 44, No. 1, 1999, pp. 218–222. doi:https://doi.org/10.1109/9.739147 IETAA9 0018-9286 CrossrefGoogle Scholar[70] Nazari M., Anthony W. and Butcher E. A., "Continuous Thrust Stationkeeping in Earth–Moon L1 Halo Orbits Based on LQR Control and Floquet Theory," AAS/AIAA Astrodynamics Specialist Conference, AIAA Paper 2014-4140, 2014. doi:https://doi.org/10.2514/6.2014-4140 LinkGoogle Scholar[71] Ghorbani M. and Assadian N., "Optimal Station-Keeping Near Earth–Moon Collinear Libration Points Using Continuous and Impulsive Maneuvers," Advances in Space Research, Vol. 52, No. 12, 2013, pp. 2067–2079. doi:https://doi.org/10.1016/j.asr.2013.09.021 ASRSDW 0273-1177 CrossrefGoogle Scholar[72] Di Giamberardino P. and Monaco S., "On Halo Orbits Spacecraft Stabilization," Acta Astronautica, Vol. 38, No. 12, 1996, pp. 903–925. doi:https://doi.org/10.1016/S0094-5765(96)00082-3 AASTCF 0094-5765 CrossrefGoogle Scholar[73] Akiyama Y., Bando M. and Hokamoto S., "Station-Keeping and Formation Flying for Periodic Orbit Around Lagrangian Points by Fourier Series," International Symposium on Space Flight Dynamics, German Space Operations Center and ESA's European Space Operations Centre, Munich, Germany, 2015. Google Scholar[74] Xu M., Zhou N. and Wang J., "Robust Adaptive Strategy for Stationkeeping of Halo Orbit," 24th Chinese Control and Decision Conference (CCDC), Inst. of Electrical and Electronics Engineers, Taiyuan, Shanxi, China, 2012, pp. 3086–3091. doi:https://doi.org/10.1109/CCDC.2012.6244486 Google Scholar[75] Nocedal J. and Wright S. J., Numerical Optimization, Springer–Verlag, New York, 2006, pp. 135–143. doi:https://doi.org/10.1007/978-0-387-40065-5 CrossrefGoogle Scholar[76] Agrawal S. K. and Fabien B. C., Optimization of Dynamic Systems, Springer Science+Business Media B.V., Springer, The Netherlands, 1999, pp. 93–95. doi:https://doi.org/10.1007/978-94-015-9149-2 CrossrefGoogle Scholar[77] Ulybyshev Y., "Long-Term Station Keeping of Space Station in Lunar Halo Orbits," Journal of Guidance, Control, and Dynamics, Vol. 38, No. 6, 2015, pp. 1063–1070. doi:https://doi.org/10.2514/1.G000242 JGCODS 0731-5090 LinkGoogle Scholar[78] Hoffman D., "Station-Keeping at the Collinear Equilibrium Points of the Earth–Moon System," NASA JSC-26189, 1993. Google Scholar[79] Cielaszyk D. and Wie B., "New Approach to Halo Orbit Determination and Control," Journal of Guidance, Control, and Dynamics, Vol. 19, No. 2, 1996, pp. 266–273. doi:https://doi.org/10.2514/3.21614 JGCODS 0731-5090 LinkGoogle Scholar[80] Wie B., Liu Q. and Bauer F., "Classical and Robust H (infinity) Control Redesign for the Hubble Space Telescope," Journal of Guidance, Control, and Dynamics, Vol. 16, No. 6, 1993, pp. 1069–1077. doi:https://doi.org/10.2514/3.21129 JGCODS 0731-5090 LinkGoogle Scholar[81] Wie B. and Gonzalez M., "Control Synthesis for Flexible Space Structures Excited by Persistent Disturbances," Journal of Guidance, Control, and Dynamics, Vol. 15, No. 1, 1992, pp. 73–80. doi:https://doi.org/10.2514/3.20803 JGCODS 0731-5090 LinkGoogle Scholar[82] Cielaszyk D. and Wie B., "Halo Orbit Determination and Control for the Elliptic Restricted Three-Body System," Astrodynamics Conference, AIAA Paper 1994-3729-CP, 1994, pp. 176–185. doi:https://doi.org/10.2514/6.1994-3729 Google Scholar[83] Zhu M., Karimi H. R., Zhang H., Gao Q. and Wang Y., "Active Disturbance Rejection Station-Keeping Control of Unstable Orbits Around Collinear Libration Points," Mathematical Problems in Engineering, Vol. 2014, pp. 1–14. doi:https://doi.org/10.1155/2014/410989 Google Scholar[84] Han J. Q., "From PID to Active Disturbance Rejection Control," IEEE Transactions on Industrial Electronics, Vol. 56, No. 3, 2009, pp. 900–906. doi:https://doi.org/10.1109/TIE.2008.2011621 ITIED6 0278-0046 CrossrefGoogle Scholar[85] Grüne L. and Pannek J., Nonlinear Model Predictive Control, Springer–Verlag London Limited, London, 2011, pp. 43–66. doi:https://doi.org/10.1007/978-0-85729-501-9 CrossrefGoogle Scholar[86] Li C., Liu G., Huang J., Gao T. and Guo Y., "Stationkeeping Control for Collinear Libration Point Orbits Using NMPC," AAS/AIAA Astrodynamics Specialist Conference, AAS Paper 15-692, Vail, CO, 2015. Google Scholar[87] Jones B. L. and Bishop R. H., "H2 Optimal Halo Orbit Guidance," Journal of Guidance, Control, and Dynamics, Vol. 16, No. 6, 1993, pp. 1118–1124. doi:https://doi.org/10.2514/3.21135 JGCODS 0731-5090 LinkGoogle Scholar[88] Kulkarni J. E. and Campbell M. E., "Asymptotic Stabilization of Motion About an Unstable Orbit: Application to Spacecraft Flight in Halo Orbit," American Control Conference, American Automatic Control Council, Boston, MA, 2004, pp. 1025–1030. Google Scholar[89] Kulkarni J. E., Campbell M. E. and Dullerud G. E., "Stabilization of Spacecraft Flight in Halo Orbits: An H∞ Approach," IEEE Transactions on Control Systems Technology, Vol. 14, No. 3, 2006, pp. 572–578. doi:https://doi.org/10.1109/TCST.2006.872517 IETTE2 1063-6536 CrossrefGoogle Scholar[90] Dullerud G. E. and Lall S., "A New Approach for Analysis and Synthesis of Time-Varying Systems," IEEE Transactions on Automatic Control, Vol. 44, No. 8, 1999, pp. 1486–1497. CrossrefGoogle Scholar[91] Howell K. C. and Pernicka H. J., "Station-Keeping Method for Libration Point Trajectories," Journal of Guidance, Control, and Dynamics, Vol. 16, No. 1, 1993, pp. 151–159. doi:https://doi.org/10.2514/3.11440 JGCODS 0731-5090 LinkGoogle Scholar[92] Howell K. C. and Gordon S. C., "Orbit Determination Error Analysis and a Station-Keeping Strategy for Sun–Earth L1 Libration Point Orbits," Journal of the Astronautical Sciences, Vol. 42, No. 2, 1994, pp. 207–228. Google Scholar[93] Gordon S. C., "Orbit Determination Error Analysis and Station-Keeping for Libration Point Trajectories," Ph.D. Thesis, Purdue Univ., West Lafayette, Indiana, 1991. Google Scholar[94] Pavlak T. A., "Mission Design Applications in the Earth–Moon System," M.Sc. Thesis, Purdue Univ., West Lafayette, Indiana, 2010. Google Scholar[95] Pavlak T. A. and Howell K. C., "Strategy for Optimal, Long-Term Stationkeeping of Libration Point Orbits in the Earth–Moon System," AAS/AIAA Astrodynamics Specialist Conference, AIAA Paper 2012-4665, 2012. doi:https://doi.org/10.2514/6.2012-4665 LinkGoogle Scholar[96] Pavlak T. A. and Howell K. C., "Strategy for Long-Term Libration Point Orbit Stationkeeping in the Earth–Moon System," AAS/AIAA Astrodynamics Specialist Conference, AAS Paper 11-516, Girdwood, AK, 2011. Google Scholar[97] Slotine J.-J. E. and Li W., Applied Nonlinear Control, Vol. 60, Prentice–Hall, Englewood Cliffs, NJ, 1991, pp. 276–307. Google Scholar[98] Perruquetti W. and Barbot J.-P., Sliding Mode Control in Engineering, CRC Press, Boca Raton, FL, 2002. CrossrefGoogle Scholar[99] Lian Y., Gómez G., Masdemont J. J. and Tang G., "Station-Keeping of Real Earth-Moon Libration Point Orbits Using Discrete-Time Sliding Mode Control," Communications in Nonlinear Science and Numerical Simulation, Vol. 19, No. 10, 2014, pp. 3792–3807. doi:https://doi.org/10.1016/j.cnsns.2014.03.026 1007-5704 CrossrefGoogle Scholar[100] Bai X. and Junkins J. L., "Modified Chebyshev–Picard Iteration Methods for Station-Keeping of Translunar Halo Orbits," Mathematical Problems in Engineering, Vol. 2012, 2012. doi:https://doi.org/10.1155/2012/926158 CrossrefGoogle Scholar[101] Bai X., "Modified Chebyshev–Picard Iteration Methods for Solution of Initial Value and Boundary Value Problems," Ph.D. Thesis, Texas A&M Univ., College Station, TX, 2010. Google Scholar[102] Shirobokov M. G., Trofimov S. P. and Ovchinnikov M., "Recovery of Halo Orbit Missions in Case of Contingent Station-Keeping Maneuver Delay," Advances in Space Research, Vol. 58, No. 9, 2016, pp. 1807–1818. doi:https://doi.org/10.1016/j.asr.2016.07.003 ASRSDW 0273-1177 CrossrefGoogle Scholar Next article FiguresReferencesRelatedDetailsCited byTarget-Based Guidance Method for Trajectories with Multiple FlybysCarmine Giordano , Gabor Varga, Ruaraidh Mackenzie, Arnaud Boutonnet and Francesco Topputo 25 January 2023 | Journal of Guidance, Control, and Dynamics, Vol. 0, No. 0Station-keeping around triangular libration points in the Earth-Moon systemAdvances in Space Research, Vol. 70, No. 11Relative Dynamics and Modern Control Strategies for Rendezvous in Libration Point Orbits5 December 2022 | Aerospace, Vol. 9, No. 12Continuous-Thrust Station-Keeping of Cis-Lunar Orbits Using Optimal Sliding Mode Control with Practical ConstraintsInternational Journal of Aerospace Engineering, Vol. 2022Performance analysis of impulsive station-keeping strategies for cis-lunar orbits with the ephemeris modelActa Astronautica, Vol. 198Station-Keeping of L2 Halo Orbits Under Sampled-Data Model Predictive ControlMohamed Elobaid , Mattia Mattioni , Salvatore Monaco and Dorothée Normand-Cyrot 24 March 2022 | Journal of Guidance, Control, and Dynamics, Vol. 45, No. 7Stochastic optimization for stationkeeping of periodic orbits using a high-order Target Point ApproachAdvances in Space Research, Vol. 70, No. 1Geometrical Analysis of Station-Keeping Strategies About Libration Point OrbitsAriadna Farrés, Chen Gao, Josep J. Masdemont, Gerard Gómez, David C. Folta and Cassandra Webster14 February 2022 | Journal of Guidance, Control, and Dynamics, Vol. 45, No. 6Sparse Optimal Trajectory Design in Three-Body Problem25 May 2022 | The Journal of the Astronautical Sciences, Vol. 69, No. 3A review of periodic orbits in the circular restricted three-body problemJournal of Systems Engineering and Electronics, Vol. 33, No. 3Continuation and stationkeeping analyses on planar retrograde periodic orbits around the EarthAdvances in Space Research, Vol. 69, No. 5Robust control of the circular restricted three-body problem with drag4 August 2020 | International Journal of Control, Vol. 95, No. 2An Autonomous Stationkeeping Strategy for Multi-Body Orbits Leveraging Reinforcement LearningNicholas B. LaFarge, Kathleen C. Howell and David C. Folta29 December 2021Analysis of nominal halo orbits in the Sun–Earth system4 September 2021 | Archive of Applied Mechanics, Vol. 91, No. 12A generic impulsive controller for hamiltonian linear time-periodic systemsChaos, Solitons & Fractals, Vol. 153An impulsive model predictive static programming based station-keeping guidance for quasi-halo orbitsActa Astronautica, Vol. 188Accessibility assessment and trajectory design for multiple Near-Earth-asteroids exploration using stand-alone CubeSatsAerospace Science and Technology, Vol. 118High order dynamical systems approaches for low-thrust station-keeping of libration point orbitsActa Astronautica, Vol. 19Exploiting manifolds of L1 halo orbits for end-to-end Earth–Moon low-thrust trajectory designActa Astronautica, Vol. 183Trajectory Design and Maintenance of the Martian Moons eXploration Mission Around PhobosNicola Baresi, Diogene A. Dei Tos, Hitoshi Ikeda and Yasuhiro Kawakatsu30 December 2020 | Journal of Guidance, Control, and Dynamics, Vol. 44, No. 5Robust control of the Hill's problem with drag24 October 2020 | International Journal of Robust and Nonlinear Control, Vol. 31, No. 1Hamiltonian-Based Libration Point Orbit Control on Manifold of Constant Energy7 January 2021Solar sail cooperative formation flying around L2 -type artificial equilibrium pointsActa Astronautica, Vol. 169On the design of a space telescope orbit around the Sun–Venus L2 pointAdvances in Space Research, Vol. 65, No. 6Station-Keeping for Periodic Orbits near Strongly Perturbed Binary Asteroid SystemsYu Shi, Yue Wang, Arun K. Misra and Shijie Xu16 October 2019 | Journal of Guidance, Control, and Dynamics, Vol. 43, No. 2Families of halo orbits in the elliptic restricted three-body problem for a solar sail with reflectivity control devicesAdvances in Space Research, Vol. 65, No. 3Tracking neighboring quasi-satellite orbits around PhobosIFAC-PapersOnLine, Vol. 53, No. 2Recovery of quasi-halo orbit missions in case of contingent station-keeping maneuver delayActa Astronautica, Vol. 165Station-keeping strategy for real translunar libration point orbits using continuous thrustAerospace Science and Technology, Vol. 94Characteristic Model-based Station-keeping Control for Halo Orbits about Sun-Earth L1 PointHamiltonian Structure-Based Robust Station-Keeping for Unstable Libration Point OrbitsSeungyun Jung and Youdan Kim28 May 2019 | Journal of Guidance, Control, and Dynamics, Vol. 42, No. 9Periodic and quasi-periodic orbit design based on the center manifold theoryActa Astronautica, Vol. 160Stabilization of Lagrange points in circular restricted three-body problem: A port-Hamiltonian approachPhysics Letters A, Vol. 383, No. 16Formation flying along unstable Libration Point Orbits using switching Hamiltonian structure-preserving controlActa Astronautica, Vol. 158Robust Station-Keeping Control of Sun-Earth/Moon Libration Point Orbits Using Electric PropulsionJournal of Aerospace Engineering, Vol. 32, No. 2Flight in Non-spherical Gravity Fields21 December 2018Propellant-efficient station-keeping using a hybrid sail in the Earth–Moon system3 November 2018 | Nonlinear Dynamics, Vol. 95, No. 2Station-keeping and formation flying based on nonlinear output regulation theoryActa Astronautica, Vol. 153Spacecraft trajectory optimization: A review of models, objectives, approaches and solutionsProgress in Aerospace Sciences, Vol. 102Enhancing Station-Keeping Control With the Use of Extended State Observers28 June 2018 | Frontiers in Applied Mathematics and Statistics, Vol. 4Halo Orbit Station-keeping using Nonlinear MPC and Polynomial OptimizationGaurav Misra, Hao Peng and Xiaoli Bai7 January 2018 What's Popular Volume 40, Number 5May 2017 CrossmarkInformationCopyright © 2016 by the American Institute of Aeronautics and Astronautics, Inc. All rights reserved. All requests for copying and permission to reprint should be submitted to CCC at www.copyright.com; employ the ISSN 0731-5090 (print) or 1533-3884 (online) to initiate your request. See also AIAA Rights and Permissions www.aiaa.org/randp. TopicsAstronomical ObservatoryAstronomyCelestial MechanicsEuropean Space AgencyNASAPlanetary Science and ExplorationPlanetsSolar PhysicsSpace AgenciesSpace Exploration and TechnologySpace MissionsSpace ObservatorySpace Science and Technology KeywordsLibration PointsGenesis MissionDelta V BudgetInterplanetary TrajectoriesEarthActive Disturbance Rejection ControlHalo OrbitBroyden Fletcher Goldfarb ShannoSolar and Heliospheric ObservatoryNonlinear ProgrammingAcknowledgmentThis work was fully supported by the Russian Science Foundation grant 14-11-00621.PDF Received12 November 2015Accepted23 October 2016Published online20 January 2017

Referência(s)