Sex-Specific Biology of the Human Malaria Parasite Revealed from the Proteomes of Mature Male and Female Gametocytes
2017; Elsevier BV; Volume: 16; Issue: 4 Linguagem: Inglês
10.1074/mcp.m116.061804
ISSN1535-9484
AutoresJun Miao, Zhao Chen, Zenglei Wang, Sony Shrestha, Xiaolian Li, Runze Li, Liwang Cui,
Tópico(s)Invertebrate Immune Response Mechanisms
ResumoThe gametocytes of the malaria parasites are obligate for perpetuating the parasite's life cycle through mosquitoes, but the sex-specific biology of gametocytes is poorly understood. We generated a transgenic line in the human malaria parasite Plasmodium falciparum, which allowed us to accurately separate male and female gametocytes by flow cytometry. In-depth analysis of the proteomes by liquid chromatography-tandem mass spectrometry identified 1244 and 1387 proteins in mature male and female gametocytes, respectively. GFP-tagging of nine selected proteins confirmed their sex-partitions to be agreeable with the results from the proteomic analysis. The sex-specific proteomes showed significant differences that are consistent with the divergent functions of the two sexes. Although the male-specific proteome (119 proteins) is enriched in proteins associated with the flagella and genome replication, the female-specific proteome (262 proteins) is more abundant in proteins involved in metabolism, translation and organellar functions. Compared with the Plasmodium berghei sex-specific proteomes, this study revealed both extensive conservation and considerable divergence between these two species, which reflect the disparities between the two species in proteins involved in cytoskeleton, lipid metabolism and protein degradation. Comparison with three sex-specific proteomes allowed us to obtain high-confidence lists of 73 and 89 core male- and female-specific/biased proteins conserved in Plasmodium. The identification of sex-specific/biased proteomes in Plasmodium lays a solid foundation for understanding the molecular mechanisms underlying the unique sex-specific biology in this early-branching eukaryote. The gametocytes of the malaria parasites are obligate for perpetuating the parasite's life cycle through mosquitoes, but the sex-specific biology of gametocytes is poorly understood. We generated a transgenic line in the human malaria parasite Plasmodium falciparum, which allowed us to accurately separate male and female gametocytes by flow cytometry. In-depth analysis of the proteomes by liquid chromatography-tandem mass spectrometry identified 1244 and 1387 proteins in mature male and female gametocytes, respectively. GFP-tagging of nine selected proteins confirmed their sex-partitions to be agreeable with the results from the proteomic analysis. The sex-specific proteomes showed significant differences that are consistent with the divergent functions of the two sexes. Although the male-specific proteome (119 proteins) is enriched in proteins associated with the flagella and genome replication, the female-specific proteome (262 proteins) is more abundant in proteins involved in metabolism, translation and organellar functions. Compared with the Plasmodium berghei sex-specific proteomes, this study revealed both extensive conservation and considerable divergence between these two species, which reflect the disparities between the two species in proteins involved in cytoskeleton, lipid metabolism and protein degradation. Comparison with three sex-specific proteomes allowed us to obtain high-confidence lists of 73 and 89 core male- and female-specific/biased proteins conserved in Plasmodium. The identification of sex-specific/biased proteomes in Plasmodium lays a solid foundation for understanding the molecular mechanisms underlying the unique sex-specific biology in this early-branching eukaryote. The life cycle of the protozoan malaria parasites encompasses multiple developmental stages and alternates between a human host and an Anopheles mosquito. In human blood, the majority of parasites assumes the asexual replication cycle, starting from merozoite invasion of a red blood cell (RBC) 1The abbreviations used are: RBC, red blood cell; MG, Male gametocytes; FG, Female gametocytes; GFP, Green fluorescent protein; FDR, False discovery rate; HPLC, High-performance liquid chromatography; LC-MS/MS, Liquid chromatography coupled with tandem mass spectrometry; SDS-PAGE, Sodium dodecyl sulfate polyacrylamide gel electrophoresis; PCR, Polymerase chain reaction. 1The abbreviations used are: RBC, red blood cell; MG, Male gametocytes; FG, Female gametocytes; GFP, Green fluorescent protein; FDR, False discovery rate; HPLC, High-performance liquid chromatography; LC-MS/MS, Liquid chromatography coupled with tandem mass spectrometry; SDS-PAGE, Sodium dodecyl sulfate polyacrylamide gel electrophoresis; PCR, Polymerase chain reaction. to the maturation of a schizont. Asexual multiplication of the parasites in erythrocytes is responsible for the clinical symptoms of malaria, and thus most antimalarial treatments are directed toward the asexual stages. Meanwhile, a small proportion of the parasites, in response to poorly defined triggers, enters the sexual pathway and develops into male and female gametocytes. Subsequently, circulating gametocytes in the human blood, after ingestion by a vector, develop into gametes in the mosquito midgut. As an essential link to the life stages in mosquitoes and for continued transmission of the parasites, gametocytes have increasingly been recognized as a prime target for interruption of transmission, especially during the malaria elimination phase (1.Alonso P.L. Brown G. Arevalo-Herrera M. Binka F. Chitnis C. Collins F. Doumbo O.K. Greenwood B. Hall B.F. Levine M.M. Mendis K. Newman R.D. Plowe C.V. Rodriguez M.H. Sinden R. Slutsker L. Tanner M. A research agenda to underpin malaria eradication.PLoS Med. 2011; 8: e1000406Crossref PubMed Scopus (463) Google Scholar). In this regard, understanding the fundamental biology of sexual development in malaria parasites will provide the knowledge base for designing transmission-blocking drugs and vaccines. Commitment to sexual development in malaria parasites occurs prior to merozoite formation in the previous erythrocytic cycle, as merozoites from a sexually-committed schizont all develop into either male or female gametocytes, but not both (2.Bruce M.C. Alano P. Duthie S. Carter R. Commitment of the malaria parasite Plasmodium falciparum to sexual and asexual development.Parasitology. 1990; 100: 191-200Crossref PubMed Scopus (184) Google Scholar, 3.Silvestrini F. Alano P. Williams J.L. Commitment to the production of male and female gametocytes in the human malaria parasite Plasmodium falciparum.Parasitology. 2000; 121: 465-471Crossref PubMed Scopus (93) Google Scholar). In most Plasmodium species, gametocytes mature within 30 h and they morphologically resemble late trophozoites. In stark contrast, gametocyte development in P. falciparum takes 10–12 days, during which the gametocytes undergo five morphologically distinct stages culminating in the mature crescent form that was observed by Alphonse Laveran in the 1880s (4.Carter R. Graves P.M. Gametocytes.in: Wernsdorfer W.H. Sir McGregor I. Malaria: Principles and Practice of Malariology. Churchill Livingstone, London1988: 253-305Google Scholar, 5.Sinden R.E. Gametocytes and sexual development.in: Sherman I.W. Malaria: Parasite Biology, Pathogenesis and Protection. ASM Press, Washington, DC1998: 25-48Google Scholar). This falciform shape transformation is partially driven by the architecture of cytoskeleton, including the inner membrane complex underneath the parasite plasma membrane (6.Dixon M.W. Dearnley M.K. Hanssen E. Gilberger T. Tilley L. Shape-shifting gametocytes: how and why does P. falciparum go banana-shaped?.Trends Parasitol. 2012; 28: 471-478Abstract Full Text Full Text PDF PubMed Scopus (39) Google Scholar, 7.Dearnley M.K. Yeoman J.A. Hanssen E. Kenny S. Turnbull L. Whitchurch C.B. Tilley L. Dixon M.W. Origin, composition, organization and function of the inner membrane complex of Plasmodium falciparum gametocytes.J. Cell Sci. 2011; 125: 2053-2063Crossref Scopus (87) Google Scholar, 8.Kono M. Herrmann S. Loughran N.B. Cabrera A. Engelberg K. Lehmann C. Sinha D. Prinz B. Ruch U. Heussler V. Spielmann T. Parkinson J. Gilberger T.W. Evolution and architecture of the inner membrane complex in asexual and sexual stages of the malaria parasite.Mol. Biol. Evol. 2012; 29: 2113-2132Crossref PubMed Scopus (79) Google Scholar, 9.Hliscs M. Millet C. Dixon M.W. Siden-Kiamos I. McMillan P. Tilley L. Organization and function of an actin cytoskeleton in Plasmodium falciparum gametocytes.Cell Microbiol. 2015; 17: 207-225Crossref PubMed Scopus (42) Google Scholar). Another distinguishing feature of P. falciparum gametocytes is the sequestration of immature stages in the bone marrow and possibly the spleen (10.Farfour E. Charlotte F. Settegrana C. Miyara M. Buffet P. The extravascular compartment of the bone marrow: a niche for Plasmodium falciparum gametocyte maturation?.Malar. J. 2012; 11: 285Crossref PubMed Scopus (72) Google Scholar, 11.Joice R. Nilsson S.K. Montgomery J. Dankwa S. Egan E. Morahan B. Seydel K.B. Bertuccini L. Alano P. Williamson K.C. Duraisingh M.T. Taylor T.E. Milner D.A. Marti M. Plasmodium falciparum transmission stages accumulate in the human bone marrow.Sci. Transl. Med. 2014; 6: 244re245Crossref Scopus (186) Google Scholar). The decoding of the parasite genomes and global profiling of gene expression in gametocytes have provided deeper insights into the biology of sexual development (12.Le Roch K.G. Zhou Y. Blair P.L. Grainger M. Moch J.K. Haynes J.D. De La Vega P. Holder A.A. Batalov S. Carucci D.J. Winzeler E.A. Discovery of gene function by expression profiling of the malaria parasite life cycle.Science. 2003; 301: 1503-1508Crossref PubMed Scopus (1018) Google Scholar, 13.Le Roch K.G. Johnson J.R. Florens L. Zhou Y. Santrosyan A. Grainger M. Yan S.F. Williamson K.C. Holder A.A. Carucci D.J. Yates 3rd, J.R. Winzeler E.A. Global analysis of transcript and protein levels across the Plasmodium falciparum life cycle.Genome Res. 2004; 14: 2308-2318Crossref PubMed Scopus (357) Google Scholar, 14.Lasonder E. Ishihama Y. Andersen J.S. Vermunt A.M. Pain A. Sauerwein R.W. Eling W.M. Hall N. Waters A.P. Stunnenberg H.G. Mann M. Analysis of the Plasmodium falciparum proteome by high-accuracy mass spectrometry.Nature. 2002; 419: 537-542Crossref PubMed Scopus (558) Google Scholar, 15.Florens L. Washburn M.P. Raine J.D. Anthony R.M. Grainger M. Haynes J.D. Moch J.K. Muster N. Sacci J.B. Tabb D.L. Witney A.A. Wolters D. Wu Y. Gardner M.J. Holder A.A. Sinden R.E. Yates J.R. Carucci D.J. A proteomic view of the Plasmodium falciparum life cycle.Nature. 2002; 419: 520-526Crossref PubMed Scopus (1089) Google Scholar, 16.Young J.A. Fivelman Q.L. Blair P.L. de la Vega P. Le Roch K.G. Zhou Y. Carucci D.J. Baker D.A. Winzeler E.A. The Plasmodium falciparum sexual development transcriptome: a microarray analysis using ontology-based pattern identification.Mol. Biochem. Parasitol. 2005; 143: 67-79Crossref PubMed Scopus (254) Google Scholar, 17.Lopez-Barragan M.J. Lemieux J. Quinones M. Williamson K.C. Molina-Cruz A. Cui K. Barillas-Mury C. Zhao K. Su X.Z. Directional gene expression and antisense transcripts in sexual and asexual stages of Plasmodium falciparum.BMC Genomics. 2011; 12: 587Crossref PubMed Scopus (213) Google Scholar, 18.Silvestrini F. Lasonder E. Olivieri A. Camarda G. van Schaijk B. Sanchez M. Younis Younis S. Sauerwein R. Alano P. Protein export marks the early phase of gametocytogenesis of the human malaria parasite Plasmodium falciparum.Mol. Cell Proteomics. 2010; 9: 1437-1448Abstract Full Text Full Text PDF PubMed Scopus (191) Google Scholar, 19.Gardner M.J. Hall N. Fung E. White O. Berriman M. Hyman R.W. Carlton J.M. Pain A. Nelson K.E. Bowman S. Paulsen I.T. James K. Eisen J.A. Rutherford K. Salzberg S.L. Craig A. Kyes S. Chan M.S. Nene V. Shallom S.J. Suh B. Peterson J. Angiuoli S. Pertea M. Allen J. Selengut J. Haft D. Mather M.W. Vaidya A.B. Martin D.M. Fairlamb A.H. Fraunholz M.J. Roos D.S. Ralph S.A. McFadden G.I. Cummings L.M. Subramanian G.M. Mungall C. Venter J.C. Carucci D.J. Hoffman S.L. Newbold C. Davis R.W. Fraser C.M. Barrell B. Genome sequence of the human malaria parasite Plasmodium falciparum.Nature. 2002; 419: 498-511Crossref PubMed Scopus (3437) Google Scholar, 20.Hall N. Karras M. Raine J.D. Carlton J.M. Kooij T.W. Berriman M. Florens L. Janssen C.S. Pain A. Christophides G.K. James K. Rutherford K. Harris B. Harris D. Churcher C. Quail M.A. Ormond D. Doggett J. Trueman H.E. Mendoza J. Bidwell S.L. Rajandream M.A. Carucci D.J. Yates 3rd, J.R. Kafatos F.C. Janse C.J. Barrell B. Turner C.M. Waters A.P. Sinden R.E. A comprehensive survey of the Plasmodium life cycle by genomic, transcriptomic, and proteomic analyses.Science. 2005; 307: 82-86Crossref PubMed Scopus (660) Google Scholar). Investigations into the molecular mechanism of gametocytogenesis led to the recent identification of AP2-G, a member of the AP2 family transcription factors, as the master switch of gametocytogenesis in both P. falciparum and the rodent parasite P. berghei. AP2-G itself, located in a heterochromatin region marked with histone H3 lysine 9 trimethylation and P. falciparum heterochromatin protein 1, is epigenetically silenced (21.Coleman B.I. Skillman K.M. Jiang R.H. Childs L.M. Altenhofen L.M. Ganter M. Leung Y. Goldowitz I. Kafsack B.F. Marti M. Llinas M. Buckee C.O. Duraisingh M.T. A Plasmodium falciparum histone deacetylase regulates antigenic variation and gametocyte conversion.Cell Host Microbe. 2014; 16: 177-186Abstract Full Text Full Text PDF PubMed Scopus (140) Google Scholar, 22.Flueck C. Bartfai R. Volz J. Niederwieser I. Salcedo-Amaya A.M. Alako B.T. Ehlgen F. Ralph S.A. Cowman A.F. Bozdech Z. Stunnenberg H.G. Voss T.S. Plasmodium falciparum heterochromatin protein 1 marks genomic loci linked to phenotypic variation of exported virulence factors.PLoS Pathog. 2009; 5: e1000569Crossref PubMed Scopus (201) Google Scholar, 23.Brancucci N.M. Bertschi N.L. Zhu L. Niederwieser I. Chin W.H. Wampfler R. Freymond C. Rottmann M. Felger I. Bozdech Z. Voss T.S. Heterochromatin protein 1 secures survival and transmission of malaria parasites.Cell Host Microbe. 2014; 16: 165-176Abstract Full Text Full Text PDF PubMed Scopus (168) Google Scholar). Stochastic activation of PfAP2-G offers an explanation for the low, baseline production of gametocytes during in vitro culture. In schizonts committed to gametocytogenesis, over 300 genes were induced, including known markers of early gametocyte development (24.Pelle K.G. Oh K. Buchholz K. Narasimhan V. Joice R. Milner D.A. Brancucci N.M. Ma S. Voss T.S. Ketman K. Seydel K.B. Taylor T.E. Barteneva N.S. Huttenhower C. Marti M. Transcriptional profiling defines dynamics of parasite tissue sequestration during malaria infection.Genome Med. 2015; 7: 19Crossref PubMed Scopus (66) Google Scholar). Subsequent gametocyte development is accompanied by up- and down-regulation of hundreds of transcripts and proteins (12.Le Roch K.G. Zhou Y. Blair P.L. Grainger M. Moch J.K. Haynes J.D. De La Vega P. Holder A.A. Batalov S. Carucci D.J. Winzeler E.A. Discovery of gene function by expression profiling of the malaria parasite life cycle.Science. 2003; 301: 1503-1508Crossref PubMed Scopus (1018) Google Scholar, 13.Le Roch K.G. Johnson J.R. Florens L. Zhou Y. Santrosyan A. Grainger M. Yan S.F. Williamson K.C. Holder A.A. Carucci D.J. Yates 3rd, J.R. Winzeler E.A. Global analysis of transcript and protein levels across the Plasmodium falciparum life cycle.Genome Res. 2004; 14: 2308-2318Crossref PubMed Scopus (357) Google Scholar, 14.Lasonder E. Ishihama Y. Andersen J.S. Vermunt A.M. Pain A. Sauerwein R.W. Eling W.M. Hall N. Waters A.P. Stunnenberg H.G. Mann M. Analysis of the Plasmodium falciparum proteome by high-accuracy mass spectrometry.Nature. 2002; 419: 537-542Crossref PubMed Scopus (558) Google Scholar, 15.Florens L. Washburn M.P. Raine J.D. Anthony R.M. Grainger M. Haynes J.D. Moch J.K. Muster N. Sacci J.B. Tabb D.L. Witney A.A. Wolters D. Wu Y. Gardner M.J. Holder A.A. Sinden R.E. Yates J.R. Carucci D.J. A proteomic view of the Plasmodium falciparum life cycle.Nature. 2002; 419: 520-526Crossref PubMed Scopus (1089) Google Scholar, 16.Young J.A. Fivelman Q.L. Blair P.L. de la Vega P. Le Roch K.G. Zhou Y. Carucci D.J. Baker D.A. Winzeler E.A. The Plasmodium falciparum sexual development transcriptome: a microarray analysis using ontology-based pattern identification.Mol. Biochem. Parasitol. 2005; 143: 67-79Crossref PubMed Scopus (254) Google Scholar, 25.Silvestrini F. Bozdech Z. Lanfrancotti A. Di Giulio E. Bultrini E. Picci L. Derisi J.L. Pizzi E. Alano P. Genome-wide identification of genes upregulated at the onset of gametocytogenesis in Plasmodium falciparum.Mol. Biochem. Parasitol. 2005; 143: 100-110Crossref PubMed Scopus (121) Google Scholar). Another member of AP2 family, AP2-G2, may regulate gametocyte development by repression of specific transcripts for asexual and stages beyond gametocyte development (26.Yuda M. Iwanaga S. Kaneko I. Kato T. Global transcriptional repression: An initial and essential step for Plasmodium sexual development.Proc. Natl. Acad. Sci. U.S.A. 2015; 112: 12824-12829Crossref PubMed Scopus (65) Google Scholar). In order to prepare for rapid changes and subsequent development in free-living environment in mosquito, gametocytes adopt several strategies including storage of "maternal" mRNAs by the DOZI and possibly Puf protein complexes that can be mobilized rapidly upon stage transition (27.Cui L. Lindner S. Miao J. Translational regulation during stage transitions in malaria parasites.Ann. N.Y. Acad. Sci. 2015; 1342: 1-9Crossref PubMed Scopus (42) Google Scholar, 28.Miao J. Fan Q. Parker D. Li X. Li J. Cui L. Puf mediates translation repression of transmission-blocking vaccine candidates in malaria parasites.PLoS Pathog. 2013; 9: e1003268Crossref PubMed Scopus (48) Google Scholar, 29.Miao J. Li J. Fan Q. Li X. Cui L. The Puf-family RNA-binding protein PfPuf2 regulates sexual development and sex differentiation in the malaria parasite Plasmodium falciparum.J. Cell Sci. 2010; 123: 1039-1049Crossref PubMed Scopus (67) Google Scholar, 30.Muller K. Matuschewski K. Silvie O. The Puf-family RNA-binding protein Puf2 controls sporozoite conversion to liver stages in the malaria parasite.PLoS ONE. 2011; 6: e19860Crossref PubMed Scopus (55) Google Scholar, 31.Gomes-Santos C.S. Braks J. Prudencio M. Carret C. Gomes A.R. Pain A. Feltwell T. Khan S. Waters A. Janse C. Mair G.R. Mota M.M. Transition of Plasmodium sporozoites into liver stage-like forms is regulated by the RNA binding protein Pumilio.PLoS Pathog. 2011; 7: e1002046Crossref PubMed Scopus (65) Google Scholar), increased expression of protein kinases and phosphatases responsible for signal transduction (32.Sebastian S. Brochet M. Collins M.O. Schwach F. Jones M.L. Goulding D. Rayner J.C. Choudhary J.S. Billker O. A Plasmodium calcium-dependent protein kinase controls zygote development and transmission by translationally activating repressed mRNAs.Cell Host Microbe. 2012; 12: 9-19Abstract Full Text Full Text PDF PubMed Scopus (126) Google Scholar, 33.Hopp C.S. Bowyer P.W. Baker D.A. The role of cGMP signalling in regulating life cycle progression of Plasmodium.Microbes Infect. 2012; 14: 831-837Crossref PubMed Scopus (33) Google Scholar, 34.Morahan B. Garcia-Bustos J. Kinase signalling in Plasmodium sexual stages and interventions to stop malaria transmission.Mol. Biochem. Parasitol. 2014; 193: 23-32Crossref PubMed Scopus (10) Google Scholar, 35.Tewari R. Straschil U. Bateman A. Bohme U. Cherevach I. Gong P. Pain A. Billker O. The systematic functional analysis of Plasmodium protein kinases identifies essential regulators of mosquito transmission.Cell Host Microbe. 2010; 8: 377-387Abstract Full Text Full Text PDF PubMed Scopus (196) Google Scholar, 36.Sinden R.E. The cell biology of malaria infection of mosquito: advances and opportunities.Cell Microbiol. 2015; 17: 451-466Crossref PubMed Scopus (44) Google Scholar, 37.Bobenchik A.M. Witola W.H. Augagneur Y. Nic Lochlainn L. Garg A. Pachikara N. Choi J.Y. Zhao Y.O. Usmani-Brown S. Lee A. Adjalley S.H. Samanta S. Fidock D.A. Voelker D.R. Fikrig E. Ben Mamoun C. Plasmodium falciparum phosphoethanolamine methyltransferase is essential for malaria transmission.Proc. Natl. Acad. Sci. U.S.A. 2013; 110: 18262-18267Crossref PubMed Scopus (52) Google Scholar, 38.McNamara C.W. Lee M.C. Lim C.S. Lim S.H. Roland J. Nagle A. Simon O. Yeung B.K. Chatterjee A.K. McCormack S.L. Manary M.J. Zeeman A.M. Dechering K.J. Kumar T.R. Henrich P.P. Gagaring K. Ibanez M. Kato N. Kuhen K.L. Fischli C. Rottmann M. Plouffe D.M. Bursulaya B. Meister S. Rameh L. Trappe J. Haasen D. Timmerman M. Sauerwein R.W. Suwanarusk R. Russell B. Renia L. Nosten F. Tully D.C. Kocken C.H. Glynne R.J. Bodenreider C. Fidock D.A. Diagana T.T. Winzeler E.A. Targeting Plasmodium PI(4)K to eliminate malaria.Nature. 2013; 504: 248-253Crossref PubMed Scopus (310) Google Scholar), and activation of tricarboxylic acid cycle and lipid metabolism for energy and lipid requirements (39.Ke H. Lewis I.A. Morrisey J.M. McLean K.J. Ganesan S.M. Painter H.J. Mather M.W. Jacobs-Lorena M. Llinas M. Vaidya A.B. Genetic investigation of tricarboxylic acid metabolism during the Plasmodium falciparum life cycle.Cell Rep. 2015; 11: 164-174Abstract Full Text Full Text PDF PubMed Scopus (88) Google Scholar, 40.MacRae J.I. Dixon M.W. Dearnley M.K. Chua H.H. Chambers J.M. Kenny S. Bottova I. Tilley L. McConville M.J. Mitochondrial metabolism of sexual and asexual blood stages of the malaria parasite Plasmodium falciparum.BMC Biol. 2013; 11: 67Crossref PubMed Scopus (158) Google Scholar, 41.Lamour S.D. Straschil U. Saric J. Delves M.J. Changes in metabolic phenotypes of Plasmodium falciparum in vitro cultures during gametocyte development.Malar. J. 2014; 13: 468Crossref PubMed Scopus (29) Google Scholar, 42.van Schaijk B.C. Kumar T.R. Vos M.W. Richman A. van Gemert G.J. Li T. Eappen A.G. Williamson K.C. Morahan B.J. Fishbaugher M. Kennedy M. Camargo N. Khan S.M. Janse C.J. Sim K.L. Hoffman S.L. Kappe S.H. Sauerwein R.W. Fidock D.A. Vaughan A.M. Type II fatty acid biosynthesis is essential for Plasmodium falciparum sporozoite development in the midgut of Anopheles mosquitoes.Eukaryot. Cell. 2014; 13: 550-559Crossref PubMed Scopus (94) Google Scholar, 43.Tran P.N. Brown S.H. Rug M. Ridgway M.C. Mitchell T.W. Maier A.G. Changes in lipid composition during sexual development of the malaria parasite Plasmodium falciparum.Malar. J. 2016; 15: 73Crossref PubMed Scopus (43) Google Scholar, 44.Gulati S. Ekland E.H. Ruggles K.V. Chan R.B. Jayabalasingham B. Zhou B. Mantel P.Y. Lee M.C. Spottiswoode N. Coburn-Flynn O. Hjelmqvist D. Worgall T.S. Marti M. Di Paolo G. Fidock D.A. Profiling the Essential Nature of Lipid Metabolism in Asexual Blood and Gametocyte Stages of Plasmodium falciparum.Cell Host Microbe. 2015; 18: 371-381Abstract Full Text Full Text PDF PubMed Scopus (87) Google Scholar). In P. falciparum sex determination occurs at the same time or soon after commitment to gametocyte development (3.Silvestrini F. Alano P. Williams J.L. Commitment to the production of male and female gametocytes in the human malaria parasite Plasmodium falciparum.Parasitology. 2000; 121: 465-471Crossref PubMed Scopus (93) Google Scholar, 45.Smith T.G. Lourenco P. Carter R. Walliker D. Ranford-Cartwright L.C. Commitment to sexual differentiation in the human malaria parasite, Plasmodium falciparum.Parasitology. 2000; 121: 127-133Crossref PubMed Scopus (92) Google Scholar), but the underpinning molecular mechanism is unknown. Plasmodium gametocyte population is generally female-biased, but the sex ratio can be modulated by host and environmental factors (46.Dixon M.W. Thompson J. Gardiner D.L. Trenholme K.R. Sex in Plasmodium: a sign of commitment.Trends Parasitol. 2008; 24: 168-175Abstract Full Text Full Text PDF PubMed Scopus (62) Google Scholar, 47.Alano P. Plasmodium falciparum gametocytes: still many secrets of a hidden life.Mol. Microbiol. 2007; 66: 291-302Crossref PubMed Scopus (92) Google Scholar). Once inside the mosquito midgut, male gametocytes (MG) are prepared for rapid DNA replication and mitosis to produce eight motile microgametes, whereas the female gametocytes (FG) are ready for mitosis and subsequent zygote-ookinete development (47.Alano P. Plasmodium falciparum gametocytes: still many secrets of a hidden life.Mol. Microbiol. 2007; 66: 291-302Crossref PubMed Scopus (92) Google Scholar, 48.Janse C. Waters A.P. Sexual development of malaria Parasites.in: Waters A.P. Janse C.J. Malaria parasites: genomes and molecular biology. The Netherlands Caister Academic Press, 2004: 445-474Google Scholar). Consistent with this functional division, the MG- and FG-specific proteomes of the rodent parasite P. berghei revealed distinctive sex-specific biology (49.Khan S.M. Franke-Fayard B. Mair G.R. Lasonder E. Janse C.J. Mann M. Waters A.P. Proteome analysis of separated male and female gametocytes reveals novel sex-specific Plasmodium biology.Cell. 2005; 121: 675-687Abstract Full Text Full Text PDF PubMed Scopus (284) Google Scholar). Sex specificity in this parasite is underlined by the identification of 36% of the 650 MG proteome and 19% of the 541 FG proteome as sex-specific. Remarkably, the two sexes only share 69 common proteins. Despite that conservation in gametocyte-specific gene sets across Plasmodium species foretells similarity in sex-specific biology in all malaria parasites, the distinctive features of P. falciparum gametocytes in morphology, development, and sequestration suggest significant differences in the induction, differentiation and development of the two sexes in this parasite (36.Sinden R.E. The cell biology of malaria infection of mosquito: advances and opportunities.Cell Microbiol. 2015; 17: 451-466Crossref PubMed Scopus (44) Google Scholar, 50.Sinden R.E. Carter R. Drakeley C. Leroy D. The biology of sexual development of Plasmodium: the design and implementation of transmission-blocking strategies.Malar. J. 2012; 11: 70Crossref PubMed Scopus (55) Google Scholar). Efforts toward dissecting the differences in MG and FG at the molecular level are thwarted by the difficulties in clearly separating the two sexes. An attempt to identify sex-partitioned proteomes of the P. falciparum gametocytes relied heavily on species-species conservation and bioinformatic predictions (51.Tao D. Ubaida-Mohien C. Mathias D.K. King J.G. Pastrana-Mena R. Tripathi A. Goldowitz I. Graham D.R. Moss E. Marti M. Dinglasan R.R. Sex-partitioning of the Plasmodium falciparum stage V gametocyte proteome provides insight into falciparum-specific cell biology.Mol. Cell Proteomics. 2014; 13: 2705-2724Abstract Full Text Full Text PDF PubMed Scopus (48) Google Scholar), and thus might have missed important information underlying the true biological differences between these species. Most recently, a comprehensive proteome analysis of separated P. falciparum MG and FG coupled with transcriptome analysis was reported (52.Lasonder E. Rijpma S.R. van Schaijk B.C. Hoeijmakers W.A. Kensche P.R. Gresnigt M.S. Italiaander A. Vos M.W. Woestenenk R. Bousema T. Mair G.R. Khan S.M. Janse C.J. Bartfai R. Sauerwein R.W. Integrated transcriptomic and proteomic analyses of P. falciparum gametocytes: molecular insight into sex-specific processes and translational repression.Nucleic Acids Res. 2016; 44: 6087-6101Crossref PubMed Scopus (140) Google Scholar). This study identified divergent MG and FG proteomes similar to the sex-specific proteomes in the gametocytes of P. berghei. We report here accurate separation of mature MG from FG in P. falciparum based on differential expression of the green fluorescent protein (GFP) in MG and FG using flow cytometry and in-depth analysis of the proteomes. The sex-specific proteomes of MG and FG exhibited significant difference that is consistent with the functional division of MG and FG. Compared with the P. berghei sex-specific proteomes, the P. falciparum sex-specific proteomes had an overall conservation of features as in P. berghei, while they also exhibited considerable inter-species differences which may underpin the different biology of gametocytogenesis in these species. Cultures of P. falciparum parasite lines were maintained in complete RPMI 1640 medium supplemented with 10% human serum and hypoxanthine as described previously (53.Trager W. Jensen J.B. Human malaria parasites in continuous culture.Science. 1976; 193: 673-675Crossref PubMed Scopus (6158) Google Scholar, 54.Ponnudurai T. Meuwissen J.H. Leeuwenberg A.D. Verhave J.P. Lensen A.H. The production of mature gametocytes of Plasmodium falciparum in continuous cultures of different isolates infective to mosquitoes.Trans. R Soc. Trop. Med. Hyg. 1982; 76: 242-250Abstract Full Text PDF PubMed Scopus (144) Google Scholar). A modified induction scheme for gametocytogenesis was used to obtain highly synchronous gametocyte cultures (55.Wang Z. Liu M. Liang X. Siriwat S. Li X. Chen X. Parker D.M. Miao J. Cui L. A flow cytometry-based quantitative drug sensitivity assay for all Plasmodium falciparum gametocyte stages.PLoS ONE. 2014; 9: e93825Crossref PubMed Scopus (21) Google Scholar, 56.Fivelman Q.L. McRobert L. Sharp S. Taylor C.J. Saeed M. Swales C.A. Sutherland C.J. Baker D.A. Improved synchronous production of Plasmodium falciparum gametocytes in vitro.Mol. Biochem. Parasitol. 2007; 154: 119-123Crossref PubMed Scopus (156) Google Scholar). Briefly, asexual parasites were synchronized twice in two successive asexual erythrocytic cycles by 5% d-sorbitol treatment of ring-stage parasites. Synchronous cultures at the trophozoite stage were set up at a parasitemia of 2.5–3.2% and a hematocrit of 3%. On the second day (day -2), ring-stage parasitemia typically reaches 8–12%. A half of spent medium was replaced by fresh medium. On the third day (day -1), stressed schizont cultures including spent medium were adjusted with fresh RBCs and medium to a par
Referência(s)