Revisão Acesso aberto Revisado por pares

Relevance of Fusion Genes in Pediatric Cancers: Toward Precision Medicine

2017; Cell Press; Volume: 6; Linguagem: Inglês

10.1016/j.omtn.2017.01.005

ISSN

2162-2531

Autores

Célia Dupain, Anne C. Harttrampf, Giorgia Urbinati, Birgit Geoerger, Liliane Massaad-Massade,

Tópico(s)

Genetic factors in colorectal cancer

Resumo

Pediatric cancers differ from adult tumors, especially by their very low mutational rate. Therefore, their etiology could be explained in part by other oncogenic mechanisms such as chromosomal rearrangements, supporting the possible implication of fusion genes in the development of pediatric cancers. Fusion genes result from chromosomal rearrangements leading to the juxtaposition of two genes. Consequently, an abnormal activation of one or both genes is observed. The detection of fusion genes has generated great interest in basic cancer research and in the clinical setting, since these genes can lead to better comprehension of the biological mechanisms of tumorigenesis and they can also be used as therapeutic targets and diagnostic or prognostic biomarkers. In this review, we discuss the molecular mechanisms of fusion genes and their particularities in pediatric cancers, as well as their relevance in murine models and in the clinical setting. We also point out the difficulties encountered in the discovery of fusion genes. Finally, we discuss future perspectives and priorities for finding new innovative therapies in childhood cancer. Pediatric cancers differ from adult tumors, especially by their very low mutational rate. Therefore, their etiology could be explained in part by other oncogenic mechanisms such as chromosomal rearrangements, supporting the possible implication of fusion genes in the development of pediatric cancers. Fusion genes result from chromosomal rearrangements leading to the juxtaposition of two genes. Consequently, an abnormal activation of one or both genes is observed. The detection of fusion genes has generated great interest in basic cancer research and in the clinical setting, since these genes can lead to better comprehension of the biological mechanisms of tumorigenesis and they can also be used as therapeutic targets and diagnostic or prognostic biomarkers. In this review, we discuss the molecular mechanisms of fusion genes and their particularities in pediatric cancers, as well as their relevance in murine models and in the clinical setting. We also point out the difficulties encountered in the discovery of fusion genes. Finally, we discuss future perspectives and priorities for finding new innovative therapies in childhood cancer. Pediatric cancers represent 1% of all cancers1American Cancer Society (2016). Key statistics for childhood cancers. https://www.cancer.org/cancer/cancerinchildren/detailedguide/cancer-in-children-key-statistics.Google Scholar and comprise cancer cases diagnosed in children younger than 14 years2Bahadur G. Hindmarsh P. Age definitions, childhood and adolescent cancers in relation to reproductive issues.Hum. Reprod. 2000; 15: 227Crossref PubMed Google Scholar and adolescents and young adults aged 15–19 years.3Minnesota Department of Health (2016). Childhood cancers: facts and figures. https://apps.health.state.mn.us/mndata/cancer_child#childbraincancer_year.Google Scholar Pediatric cancers include more than 60 different types of cancer derived from different tissues. More than 250,000 cases are diagnosed worldwide each year among children and adolescents younger than 20 years (http://www.childhoodcancerinternational.org). Although 80% of pediatric patients reach long-term remission after treatment, 20% die from recurrence of the malignancy; therefore, more therapeutic targets are needed to improve survival rates.1American Cancer Society (2016). Key statistics for childhood cancers. https://www.cancer.org/cancer/cancerinchildren/detailedguide/cancer-in-children-key-statistics.Google Scholar Moreover, current treatments are based on multimodal aggressive chemotherapies, and it is well known that antineoplastic treatments have long-term side effects that could impact patients' quality of life.4Fidler M.M. Reulen R.C. Winter D.L. Kelly J. Jenkinson H.C. Skinner R. Frobisher C. Hawkins M.M. British Childhood Cancer Survivor Study Steering GroupLong term cause specific mortality among 34 489 five year survivors of childhood cancer in Great Britain: population based cohort study.BMJ. 2016; 354: i4351Crossref PubMed Google Scholar Pediatric cancers differ from adult cancers. In fact, most pediatric cancers arise from embryonal rather than epithelial cells;5Marshall G.M. Carter D.R. Cheung B.B. Liu T. Mateos M.K. Meyerowitz J.G. Weiss W.A. The prenatal origins of cancer.Nat. Rev. Cancer. 2014; 14: 277-289Crossref PubMed Scopus (106) Google Scholar consequently, the etiology of pediatric cancers is different. Zhang et al.6Zhang J. Walsh M.F. Wu G. Edmonson M.N. Gruber T.A. Easton J. Hedges D. Ma X. Zhou X. Yergeau D.A. et al.Germline mutations in predisposition genes in pediatric cancer.N. Engl. J. Med. 2015; 373: 2336-2346Crossref PubMed Scopus (338) Google Scholar previously reported that 8%–10% of pediatric cancers are associated with germline alterations leading to a cancer predisposition (Table 1). The involvement of environmental factors in childhood cancer etiology is still discussed, but there is clearly a lower implication of exogenous toxic effects in children than in adults (e.g., smoking, alcohol consumption, sun exposure, and overweight and sedentary lifestyle). Very few environmental factors have been related to pediatric cancers to date: ionizing radiation and electromagnetic fields are some of the effects that remain a source of controversy, whereas some chemicals such as dioxin, trichloroethane, pesticides, solvents, metals, petroleum products, boron, and pollution have been associated with specific cancer types.7Kaatsch P. Epidemiology of childhood cancer.Cancer Treat. Rev. 2010; 36: 277-285Abstract Full Text Full Text PDF PubMed Scopus (472) Google Scholar, 8Kupfer, G.M. (2015). Childhood cancer epidemiology: overview, tools of study, cancer incidence. http://emedicine.medscape.com/article/989841-overview.Google Scholar Other factors such as epigenetics and immune system deregulation have also been identified as being responsible for tumorigenesis.9Huether R. Dong L. Chen X. Wu G. Parker M. Wei L. Ma J. Edmonson M.N. Hedlund E.K. Rusch M.C. et al.The landscape of somatic mutations in epigenetic regulators across 1,000 paediatric cancer genomes.Nat. Commun. 2014; 5: 3630Crossref PubMed Google Scholar, 10Orentas R.J. Lee D.W. Mackall C. Immunotherapy targets in pediatric cancer.Front. Oncol. 2012; 2: 3PubMed Google ScholarTable 1Syndromes of Genetic Predisposition Found among Children with Cancer and the Corresponding Affected GenesGenetic PredispositionAffected GeneaChildren's Health and the Environment, WHO Training Package for the Health Sector (World Health Organization, http://www.who.int/ceh).Li-Fraumeni syndromeTP53/CHK2/SNF5Familial Wilms tumorFTW1/2Familial retinoblastomaRB1Fanconi anemiaFANCAIgA deficiencyIGAD1Blood syndromeBLMWiskott-Aldrich syndromeWASAtaxia telangiectasiaATMFamilial adenomatous polyposisAPCHereditary non-polyposis colon cancerMSH2/MLH1/PMS2Tuberous sclerosisTSC1/2Beckwith-Wiedemann syndromeComplexXeroderma pigmentosumERCC2a Children's Health and the Environment, WHO Training Package for the Health Sector (World Health Organization, http://www.who.int/ceh). Open table in a new tab Vogelstein et al.11Vogelstein B. Papadopoulos N. Velculescu V.E. Zhou S. Diaz Jr., L.A. Kinzler K.W. Cancer genome landscapes.Science. 2013; 339: 1546-1558Crossref PubMed Scopus (3632) Google Scholar highlighted that pediatric cancers usually harbor fewer genetic mutations than adult cancers. They explained that the lower mutation rate found in pediatric cancers may be due to the embryonal origin of these cancers, which did not have enough time to renew. As a consequence, the tumors harbor very few mutations at the basal state.11Vogelstein B. Papadopoulos N. Velculescu V.E. Zhou S. Diaz Jr., L.A. Kinzler K.W. Cancer genome landscapes.Science. 2013; 339: 1546-1558Crossref PubMed Scopus (3632) Google Scholar These differences in mutation patterns could also be explained in part by the difference in cancer initiation, such as the implication of exogenous toxic effects. A possible hypothesis of their etiology could be the presence of chromosome rearrangements, which is one of the first mechanisms described to be responsible for carcinogenesis.12Duesberg P.H. Cancer genes generated by rare chromosomal rearrangements rather than activation of oncogenes.Med. Oncol. Tumor Pharmacother. 1987; 4: 163-175Crossref PubMed Scopus (4) Google Scholar These rearrangements can lead, in some cases, to fusion genes, which are the juxtaposition of two previously separate genes localized on the same (intra-chromosomal) or two different (inter-chromosomal) chromosomes. This event can activate proto-oncogenes or inactivate tumor suppressor genes. It has also been shown in adult cancers that some tumors with driving fusions have a much lower mutational burden compared to tumors without fusions.13Yoshihara K. Wang Q. Torres-Garcia W. Zheng S. Vegesna R. Kim H. Verhaak R.G. The landscape and therapeutic relevance of cancer-associated transcript fusions.Oncogene. 2015; 34: 4845-4854Crossref PubMed Scopus (191) Google Scholar Thus, pediatric cancers appear to be the consequence of chromosomal rearrangements rather than mutation events. We should keep in mind that a recurrence of alterations (mutations and copy-number alterations) of genes involved in embryogenesis14Walz A.L. Ooms A. Gadd S. Gerhard D.S. Smith M.A. Guidry Auvil J.M. Meerzaman D. Chen Q.R. Hsu C.H. Yan C. et al.Recurrent DGCR8, DROSHA, and SIX homeodomain mutations in favorable histology Wilms tumors.Cancer Cell. 2015; 27: 286-297Abstract Full Text Full Text PDF PubMed Scopus (103) Google Scholar and epigenetic regulation are also described in pediatric cancers9Huether R. Dong L. Chen X. Wu G. Parker M. Wei L. Ma J. Edmonson M.N. Hedlund E.K. Rusch M.C. et al.The landscape of somatic mutations in epigenetic regulators across 1,000 paediatric cancer genomes.Nat. Commun. 2014; 5: 3630Crossref PubMed Google Scholar but will not be discussed here. In this review, we describe recent molecular knowledge on fusion genes in pediatric cancers. We then outline the potential therapeutic utility of fusion genes, their relevance in murine models, and we describe recent findings in the clinical setting as well as challenges associated with their discovery. Fusion genes were primarily discovered in leukemia and other hematological diseases. In 1962, Nowell15Nowell P.C. The minute chromosome (Phl) in chronic granulocytic leukemia.Blut. 1962; 8: 65-66Crossref PubMed Scopus (0) Google Scholar described the first specific chromosomal rearrangement in chronic myeloid leukemia (CML). In 1973, Rowley16Rowley J.D. Letter: A new consistent chromosomal abnormality in chronic myelogenous leukaemia identified by quinacrine fluorescence and Giemsa staining.Nature. 1973; 243: 290-293Crossref PubMed Google Scholar highlighted the existence of a reciprocal translocation between the long arms of chromosomes 9 and 22, t(9q; 22q), named the "Philadelphia chromosome." Twenty years later in the early 1980s, molecular studies of the translocation revealed a fusion between the 3′ part of the ABL1 gene in chromosome 9 and the 5′ part of the BCR1 gene in chromosome 22.17de Klein A. van Kessel A.G. Grosveld G. Bartram C.R. Hagemeijer A. Bootsma D. Spurr N.K. Heisterkamp N. Groffen J. Stephenson J.R. A cellular oncogene is translocated to the Philadelphia chromosome in chronic myelocytic leukaemia.Nature. 1982; 300: 765-767Crossref PubMed Scopus (976) Google Scholar This translocation resulting in BCR-ABL was one of the first specific alterations found in human neoplasm. Ten years later, a tyrosine kinase inhibitor (TKI) targeting BCR-ABL, imatinib mesylate (Glivec; Novartis), was discovered and approved by the Food and Drug Administration (FDA) in 2001 as a cancer treatment for CML.18Basel, N. (2001) FDA approves Novartis' unique cancer medication Glivec®. http://www.evaluategroup.com/Universal/View.aspx?type=Story&id=5838.Google Scholar This TKI was one of the first targeted therapies used for cancer treatment and led to a major improvement of CML prognosis, with a remission in 80% of cases. After this time, it became clear that fusions can drive cancer development and are potential therapeutic targets in anti-cancer treatment in a very specific manner. Consequently to imatinib mesylate's history, fusion genes in hematological neoplasia and sarcoma were discovered19Mertens F. Johansson B. Fioretos T. Mitelman F. The emerging complexity of gene fusions in cancer.Nat. Rev. Cancer. 2015; 15: 371-381Crossref PubMed Scopus (221) Google Scholar and, more recently, high-resolution sequencing technologies enabled exploration of more fusion genes in other tumors.20Tomlins S.A. Rhodes D.R. Perner S. Dhanasekaran S.M. Mehra R. Sun X.-W. Varambally S. Cao X. Tchinda J. Kuefer R. et al.Recurrent fusion of TMPRSS2 and ETS transcription factor genes in prostate cancer.Science. 2005; 310: 644-648Crossref PubMed Scopus (2670) Google Scholar, 21Ju Y.S. Lee W.-C. Shin J.-Y. Lee S. Bleazard T. Won J.-K. Kim Y.T. Kim J.I. Kang J.H. Seo J.S. A transforming KIF5B and RET gene fusion in lung adenocarcinoma revealed from whole-genome and transcriptome sequencing.Genome Res. 2012; 22: 436-445Crossref PubMed Scopus (316) Google Scholar It should be noted that most of the studies and discoveries to date were made among adult patients; nevertheless, some pediatric cancers have been described to also harbor fusion genes that are involved in patients' diagnosis and/or targeted treatments (Table 2). However, more explorations are needed to not only identify new targets but also to understand the function of fusion genes and their correlation to tumor initiation and progression.22Mitelman F. Johansson B. Mertens F. The impact of translocations and gene fusions on cancer causation.Nat. Rev. Cancer. 2007; 7: 233-245Crossref PubMed Scopus (805) Google Scholar Indeed, of all of the multiple fusions identified by next-generation sequencing in each pediatric pathology (Table 2), only a few of them received attention for extensive functional studies, thus precluding the investigation and discovery of new druggable targets.19Mertens F. Johansson B. Fioretos T. Mitelman F. The emerging complexity of gene fusions in cancer.Nat. Rev. Cancer. 2015; 15: 371-381Crossref PubMed Scopus (221) Google ScholarTable 2Main Fusions Identified in Pediatric CancersPathology (Total No. of Recurrent Fusions)Fusion Transcript (Most Frequent and Recurrent)aMost of the fusions are listed in the Mitelman database (http://cgap.nci.nih.gov/Chromosomes/RecurrentAberrations).Chromosome AbnormalityDiagnosisReferencePrognosisLeukemia (113)NUP98-NSD1t(5;11)acute monoblastic, myeloblastic, and myelomonocytic leukemia90Jaju R.J. Fidler C. Haas O.A. Strickson A.J. Watkins F. Clark K. Cross N.C. Cheng J.F. Aplan P.D. Kearney L. et al.A novel gene, NSD1, is fused to NUP98 in the t(5;11)(q35;p15.5) in de novo childhood acute myeloid leukemia.Blood. 2001; 98: 1264-1267Crossref PubMed Scopus (0) Google ScholarpoorSET-NUP214del(9)acute monoblastic, myeloblastic, and myelomonocytic leukemia; T-ALL91Van Vlierberghe P. Pieters R. Beverloo H.B. Meijerink J.P. Molecular-genetic insights in paediatric T-cell acute lymphoblastic leukaemia.Br. J. Haematol. 2008; 143: 153-168Crossref PubMed Scopus (99) Google ScholarpoorIgH-MYC/CEBPD/BCL2/CRLF2/ID4t(8;14), t(8;14), t(14;18), t(X;14), t(6;14)ALL92Akasaka T. Balasas T. Russell L.J. Sugimoto K.J. Majid A. Walewska R. Karran E.L. Brown D.G. Cain K. Harder L. et al.Five members of the CEBP transcription factor family are targeted by recurrent IGH translocations in B-cell precursor acute lymphoblastic leukemia (BCP-ALL).Blood. 2007; 109: 3451-3461Crossref PubMed Scopus (139) Google Scholar, 93Nacheva E. Kearney L. Bower M. Chaplin T. Douek E. Das S. Young B.D. In situ hybridisation analysis of a homogeneously staining region at 11q23-24 in an acute myeloid leukaemia (M5) using yeast artificial chromosomes.Genes Chromosomes Cancer. 1993; 7: 123-127Crossref PubMed Google Scholar, 94Russell L.J. Akasaka T. Majid A. Sugimoto K.J. Loraine Karran E. Nagel I. Harder L. Claviez A. Gesk S. Moorman A.V. et al.t(6;14)(p22;q32): a new recurrent [email protected] translocation involving ID4 in B-cell precursor acute lymphoblastic leukemia (BCP-ALL).Blood. 2008; 111: 387-391Crossref PubMed Scopus (0) Google Scholar, 95Rüssel J. Dutta U. Wand D. Schlote D. Hansmann I. The 9p24.3 breakpoint of a constitutional t(6;9)(p12;p24) in a patient with chronic lymphocytic leukemia maps close to the putative promoter region of the DMRT2 gene.Cytogenet. Genome Res. 2009; 125: 81-86Crossref PubMed Google Scholar, 96Vaishampayan U.N. Mohamed A.N. Dugan M.C. Bloom R.E. Palutke M. Blastic mantle cell lymphoma associated with Burkitt-type translocation and hypodiploidy.Br. J. Haematol. 2001; 115: 66-68Crossref PubMed Scopus (0) Google ScholarpoorMYC rearrangedt(8;14), t(2;8), t(8;22)various hematologic malignancies97Lin P. Medeiros L.J. The impact of MYC rearrangements and "double hit" abnormalities in diffuse large B-cell lymphoma.Curr. Hematol. Malig. Rep. 2013; 8: 243-252Crossref PubMed Google Scholar, 98Sewastianik T. Prochorec-Sobieszek M. Chapuy B. Juszczyński P. MYC deregulation in lymphoid tumors: molecular mechanisms, clinical consequences and therapeutic implications.Biochim. Biophys. Acta. 2014; 1846: 457-467PubMed Google Scholar, 99van Krieken J.H. Kluin P.M. [Non-Hodgkin lymphoma of the stomach as an entity. Concept formation and current developments].Ned. Tijdschr. Geneeskd. 1992; 136: 1200-1203PubMed Google ScholarpoorTCRA/B/D rearrangedALL100Adriaansen H.J. Soeting P.W. Wolvers-Tettero I.L. van Dongen J.J. Immunoglobulin and T-cell receptor gene rearrangements in acute non-lymphocytic leukemias. Analysis of 54 cases and a review of the literature.Leukemia. 1991; 5: 744-751PubMed Google Scholar, 101Allam A. Kabelitz D. TCR trans-rearrangements: biological significance in antigen recognition vs the role as lymphoma biomarker.J. Immunol. 2006; 176: 5707-5712Crossref PubMed Google Scholar, 102Schmidt C.A. Przybylski G. Seeger K. Siegert W. TCR delta gene rearrangements in acute myeloid leukemia with T-lymphoid antigen expression.Leuk. Lymphoma. 1995; 20: 45-49Crossref PubMed Scopus (8) Google Scholarno prognostic valueKMT2A-AFF1t(1;11)ALL, biphenotypic leukemia, AML103Shih L.Y. Liang D.C. Fu J.F. Wu J.H. Wang P.N. Lin T.L. Dunn P. Kuo M.C. Tang T.C. Lin T.H. Lai C.L. Characterization of fusion partner genes in 114 patients with de novo acute myeloid leukemia and MLL rearrangement.Leukemia. 2006; 20: 218-223Crossref PubMed Scopus (0) Google ScholarpoorE2A-PBX1t(1;19)B-ALL104Hunger S.P. Galili N. Carroll A.J. Crist W.M. Link M.P. Cleary M.L. The t(1;19)(q23;p13) results in consistent fusion of E2A and PBX1 coding sequences in acute lymphoblastic leukemias.Blood. 1991; 77: 687-693Crossref PubMed Google Scholar, 105Troussard X. Charpentier F. Haioun C. Cordonnier C. Vernant J.P. Rochant H. [Bone marrow necrosis disclosing multiple myeloma of bone].Presse Med. 1985; 14: 1888PubMed Google ScholarpoorMLL-AF4t(4;11)B-ALL106Domer P.H. Fakharzadeh S.S. Chen C.S. Jockel J. Johansen L. Silverman G.A. Kersey J.H. Korsmeyer S.J. Acute mixed-lineage leukemia t(4;11)(q21;q23) generates an MLL-AF4 fusion product.Proc. Natl. Acad. Sci. USA. 1993; 90: 7884-7888Crossref PubMed Google ScholarpoorPAX5-ETV6t(9;12)B-ALL107Strehl S. König M. Dworzak M.N. Kalwak K. Haas O.A. PAX5/ETV6 fusion defines cytogenetic entity dic(9;12)(p13;p13).Leukemia. 2003; 17: 1121-1123Crossref PubMed Scopus (0) Google ScholargoodETV6-RUNX1t(12;21)B-ALL, AML, acute myeloblastic leukemia108Golub T.R. Barker G.F. Bohlander S.K. Hiebert S.W. Ward D.C. Bray-Ward P. Morgan E. Raimondi S.C. Rowley J.D. Gilliland D.G. Fusion of the TEL gene on 12p13 to the AML1 gene on 21q22 in acute lymphoblastic leukemia.Proc. Natl. Acad. Sci. USA. 1995; 92: 4917-4921Crossref PubMed Scopus (643) Google ScholargoodCALM-AF10t(10;11)T-ALL109Dreyling M.H. Martinez-Climent J.A. Zheng M. Mao J. Rowley J.D. Bohlander S.K. The t(10;11)(p13;q14) in the U937 cell line results in the fusion of the AF10 gene and CALM, encoding a new member of the AP-3 clathrin assembly protein family.Proc. Natl. Acad. Sci. USA. 1996; 93: 4804-4809Crossref PubMed Scopus (231) Google ScholarpoorTEL-AML1/RUNX1t(8;12), t(12;21)T-ALL, B-ALL108Golub T.R. Barker G.F. Bohlander S.K. Hiebert S.W. Ward D.C. Bray-Ward P. Morgan E. Raimondi S.C. Rowley J.D. Gilliland D.G. Fusion of the TEL gene on 12p13 to the AML1 gene on 21q22 in acute lymphoblastic leukemia.Proc. Natl. Acad. Sci. USA. 1995; 92: 4917-4921Crossref PubMed Scopus (643) Google Scholar, 110Shurtleff S.A. Buijs A. Behm F.G. Rubnitz J.E. Raimondi S.C. Hancock M.L. Chan G.C. Pui C.H. Grosveld G. Downing J.R. TEL/AML1 fusion resulting from a cryptic t(12;21) is the most common genetic lesion in pediatric ALL and defines a subgroup of patients with an excellent prognosis.Leukemia. 1995; 9: 1985-1989PubMed Google ScholargoodAML1-ETOt(8;21)AML111Erickson P. Gao J. Chang K.S. Look T. Whisenant E. Raimondi S. Lasher R. Trujillo J. Rowley J. Drabkin H. Identification of breakpoints in t(8;21) acute myelogenous leukemia and isolation of a fusion transcript, AML1/ETO, with similarity to Drosophila segmentation gene, runt.Blood. 1992; 80: 1825-1831Crossref PubMed Google ScholargoodRPN1-PRDM16/MECOMt(1;3), inv(3)AML112Bernstein M.L. Esseltine D.W. Emond J. Vekemans M. Acute lymphoblastic leukemia at relapse in a child with acute myeloblastic leukemia.Am. J. Pediatr. Hematol. Oncol. 1986; 8: 153-157Crossref PubMed Google Scholar, 113Viguie F. Marie J.P. Poler F. Bernadou A. Three cases of preleukemic myelodysplastic disorders with the same translocation t(1;3).Cancer Genet. Cytogenet. 1986; 19: 213-218Abstract Full Text PDF PubMed Google ScholarpoorNPM-MLF1t(3;5)AML, acute erythroleukemia114Yoneda-Kato N. Look A.T. Kirstein M.N. Valentine M.B. Raimondi S.C. Cohen K.J. Carroll A.J. Morris S.W. The t(3;5)(q25.1;q34) of myelodysplastic syndrome and acute myeloid leukemia produces a novel fusion gene, NPM-MLF1.Oncogene. 1996; 12: 265-275PubMed Google ScholarpoorDEK-CANt(6;9)AML, acute myeloblastic leukemia115von Lindern M. Fornerod M. van Baal S. Jaegle M. de Wit T. Buijs A. Grosveld G. The translocation (6;9), associated with a specific subtype of acute myeloid leukemia, results in the fusion of two genes, dek and can, and the expression of a chimeric, leukemia-specific dek-can mRNA.Mol. Cell. Biol. 1992; 12: 1687-1697Crossref PubMed Google ScholarpoorETV6-MDS-1/CHIC2t(3;12), t(4;12)AML, acute myeloblastic leukemia116Kawamura-Saito M. Yamazaki Y. Kaneko K. Kawaguchi N. Kanda H. Mukai H. Gotoh T. Motoi T. Fukayama M. Aburatani H. et al.Fusion between CIC and DUX4 up-regulates PEA3 family genes in Ewing-like sarcomas with t(4;19)(q35;q13) translocation.Hum. Mol. Genet. 2006; 15: 2125-2137Crossref PubMed Scopus (231) Google Scholar, 117Peeters P. Raynaud S.D. Cools J. Wlodarska I. Grosgeorge J. Philip P. Monpoux F. Van Rompaey L. Baens M. Van den Berghe H. Marynen P. Fusion of TEL, the ETS-variant gene 6 (ETV6), to the receptor-associated kinase JAK2 as a result of t(9;12) in a lymphoid and t(9;15;12) in a myeloid leukemia.Blood. 1997; 90: 2535-2540Crossref PubMed Google ScholarpoorRUNX1-CBFA2T3t(16;21)AML, acute myeloblastic leukemia, acute myelomonocytic leukemia118Gamou T. Kitamura E. Hosoda F. Shimizu K. Shinohara K. Hayashi Y. Nagase T. Yokoyama Y. Ohki M. The partner gene of AML1 in t(16;21) myeloid malignancies is a novel member of the MTG8(ETO) family.Blood. 1998; 91: 4028-4037Crossref PubMed Google ScholargoodCBFB-MYH11inv(16)AML, acute monoblastic leukemia, acute myelocytic leukemia, CML119Claxton D.F. Liu P. Hsu H.B. Marlton P. Hester J. Collins F. Deisseroth A.B. Rowley J.D. Siciliano M.J. Detection of fusion transcripts generated by the inversion 16 chromosome in acute myelogenous leukemia.Blood. 1994; 83: 1750-1756Crossref PubMed Google ScholargoodPML-RARAt(15;17)AML, biphenotypic leukemia, acute promyelocytic leukemia, CML120Borrow J. Goddard A.D. Sheer D. Solomon E. Molecular analysis of acute promyelocytic leukemia breakpoint cluster region on chromosome 17.Science. 1990; 249: 1577-1580Crossref PubMed Google Scholar, 121Longo L. Donti E. Mencarelli A. Avanzi G. Pegoraro L. Alimena G. Tabilio A. Venti G. Grignani F. Pelicci P.G. Mapping of chromosome 17 breakpoints in acute myeloid leukemias.Oncogene. 1990; 5: 1557-1563PubMed Google ScholargoodUSP16-RUNX1del(21)CML122Gelsi-Boyer V. Trouplin V. Adélaïde J. Aceto N. Remy V. Pinson S. Houdayer C. Arnoulet C. Sainty D. Bentires-Alj M. et al.Genome profiling of chronic myelomonocytic leukemia: frequent alterations of RAS and RUNX1 genes.BMC Cancer. 2008; 8: 299Crossref PubMed Scopus (87) Google ScholarpoorBCR-ABLt(9;22)CML; pediatric ALL; undifferentiated and biphenotypic leukemia123Shtivelman E. Lifshitz B. Gale R.P. Canaani E. Fused transcript of abl and bcr genes in chronic myelogenous leukaemia.Nature. 1985; 315: 550-554Crossref PubMed Scopus (1161) Google Scholar, 124Stam K. Heisterkamp N. Grosveld G. de Klein A. Verma R.S. Coleman M. Dosik H. Groffen J. Evidence of a new chimeric bcr/c-abl mRNA in patients with chronic myelocytic leukemia and the Philadelphia chromosome.N. Engl. J. Med. 1985; 313: 1429-1433Crossref PubMed Google ScholargoodIgH-MYCt(8;14)various hematologic malignancies125Rabbitts T.H. Translocations, master genes, and differences between the origins of acute and chronic leukemias.Cell. 1991; 67: 641-644Abstract Full Text PDF PubMed Google ScholargoodKMT2A-ELL/MLLT1t(11;19)various hematologic malignancies126Huret J.L. Brizard A. Slater R. Charrin C. Bertheas M.F. Guilhot F. Hählen K. Kroes W. van Leeuwen E. Schoot E.V. et al.Cytogenetic heterogeneity in t(11;19) acute leukemia: clinical, hematological and cytogenetic analyses of 48 patients--updated published cases and 16 new observations.Leukemia. 1993; 7: 152-160PubMed Google ScholarpoorMLL rearrangedALL, biphenotypic leukemia, AML127Meyer C. Hofmann J. Burmeister T. Gröger D. Park T.S. Emerenciano M. Pombo de Oliveira M. Renneville A. Villarese P. Macintyre E. et al.The MLL recombinome of acute leukemias in 2013.Leukemia. 2013; 27: 2165-2176Crossref PubMed Scopus (277) Google ScholarpoorZMYM2-FGFR1t(8;13)various hematologic malignancies128Xiao S. Nalabolu S.R. Aster J.C. Ma J. Abruzzo L. Jaffe E.S. Stone R. Weissman S.M. Hudson T.J. Fletcher J.A. FGFR1 is fused with a novel zinc-finger gene, ZNF198, in the t(8;13) leukaemia/lymphoma syndrome.Nat. Genet. 1998; 18: 84-87Crossref PubMed Scopus (259) Google ScholarpoorLymphomas (41)IGH-BCL10/BCL11A/FOXP1t(1;14), t(2;14), t(3;14)extranodal marginal zone B cell lymphoma, CLL, diffuse large B cell lymphoma, MALT lymphoma129Sonnier J.A. Buchanan G.R. Howard-Peebles P.N. Rutledge J. Smith R.G. Chromosomal translocation involving the immunoglobulin kappa-chain and heavy-chain loci in a child with chronic lymphocytic leukemia.N. Engl. J. Med. 1983; 309: 590-594Crossref PubMed Google Scholar, 130Willis T.G. Jadayel D.M. Du M.Q. Peng H. Perry A.R. Abdul-Rauf M. Price H. Karran L. Majekodunmi O. Wlodarska I. et al.Bcl10 is involved in t(1;14)(p22;q32) of MALT B cell lymphoma and mutated in multiple tumor types.Cell. 1999; 96: 35-45Abstract Full Text Full Text PDF PubMed Scopus (536) Google Scholar, 131Wlodarska I. Veyt E. De Paepe P. Vandenberghe P. Nooijen P. Theate I. Michaux L. Sagaert X. Marynen P. Hagemeijer A. De Wolf-Peeters C. FOXP1, a gene highly expressed in a subset of diffuse large B-cell lymphoma, is recurrently targeted by genomic aberrations.Leukemia. 2005; 19: 1299-1305Crossref PubMed Scopus (117) Google Scholarpoor for t(1;14); no information available for t(2;14) and t(3;14)IGK-BCL2/KDSR/CDK6t(2;18), t(2;7)follicular lymphoma, splenic marginal zone B cell lymphoma132Corcoran M.M. Mould S.J. Orchard J.A. Ibbotson R.E. Chapman R.M. Boright A.P. Platt C. Tsui L.C. Scherer S.W. Oscier D.G. Dysregulation of cyclin dependent kinase 6 expression in splenic marginal zone lymphoma through chromosome 7q translocations.Oncogene. 1999; 18: 6271-6277Crossref PubMed Google Scholar, 133Hillion J. Mecucci C. Aventin A. Leroux D. Wlodarska I. Van Den Berghe H. Larsen C.J. A variant translocation t(2;18) in follicular lymphoma involves the 5′ end of bcl-2 and Ig kappa light chain gene.Oncogene. 1991; 6: 169-172PubMed Google Scholarno information availableNPM1-ALKt(2;5)mature B cell neoplasms, mature T cell neoplasms52Morris S.W. Kirstein M.N. Valentine M.B. Dittmer K. Shapiro D.N. Look A.T. Saltman D.L. Fusion of a kinase gene, ALK, to a nucleolar protein gene, NPM, in non-Hodgkin's lymphoma.Science. 1995; 267: 316-317Crossref PubMed Google ScholargoodIGL-BCL2t(18;22)mature B cell neoplasms, CLL134Seité P. Leroux D. Hillion J. Monteil M. Berger R. Mathieu-Mahul D. Larsen C.J. Molecular analysis of a variant 18;22 translocation in a case of lymphocytic lymphoma.Genes Chromosomes Cancer. 1993; 6: 39-44Crossref PubMed Scopus (0) Google ScholarpoorIGH/IGK-MYCt(2;8), t(8;14)various B cell neoplasms135Sümegi J. Spira J. Bazin H. Szpirer J. Levan G. Klein G. Rat c-myc oncogene is located on chromosome 7 and rearranges in immunocytomas with t(6:7) chromosomal translocation.Nature. 1983; 306: 497-498Crossref PubMed Scopus (0) Google ScholarpoorIGH/HSP90AA1/IGL-BCL6t(3;14), t(3;22)various lymphoma types136Baron B.W. Nucifora G. McCabe N. Espinosa 3rd, R. Le Beau M.M. McKeithan T.W. Identification of the gene associated with the recurring chromosomal translocations t(3;14)(q27;q32) and t(3;22)(q27;q11) in B-cell lymphomas.Proc. Natl. Acad. Sci. USA. 1993; 90: 5262-5266Crossref PubMed Google Scholar, 137Xu J. Chernos J.E. Bernier F. Lowry R.B. Characterization of an interstitial deletion del(13)(q22q32) using microdissection and sequential FISH and

Referência(s)