The DeepMIP contribution to PMIP4: experimental design for model simulations of the EECO, PETM, and pre-PETM (version 1.0)
2017; Copernicus Publications; Volume: 10; Issue: 2 Linguagem: Inglês
10.5194/gmd-10-889-2017
ISSN1991-9603
AutoresDaniel J. Lunt, Matthew Huber, Eleni Anagnostou, Michiel Baatsen, Rodrigo Caballero, R. M. Deconto, Henk A. Dijkstra, Yannick Donnadieu, David Evans, Ran Feng, Gavin L. Foster, E. Gasson, Anna S. von der Heydt, Christopher J. Hollis, Gordon N. Inglis, Stephen Jones, Jeff Kiehl, Sandra Kirtland Turner, Robert Korty, Reinhardt Kozdon, Srinath Krishnan, Jean‐Baptiste Ladant, Petra M. Langebroek, Caroline H. Lear, Allegra N. LeGrande, Kate Littler, Paul J. Markwick, Bette L. Otto‐Bliesner, Paul N. Pearson, Christopher J. Poulsen, Ulrich Salzmann, Christine A. Shields, Kathryn E. Snell, Michael Stärz, J. R. Super, Clay Tabor, Jessica E. Tierney, Gregory J. L. Tourte, Aradhna Tripati, Garland R. Upchurch, Bridget S. Wade, Scott L. Wing, A. Winguth, Nicky M. Wright, James C. Zachos, Richard E. Zeebe,
Tópico(s)Geology and Paleoclimatology Research
ResumoAbstract. Past warm periods provide an opportunity to evaluate climate models under extreme forcing scenarios, in particular high ( > 800 ppmv) atmospheric CO2 concentrations. Although a post hoc intercomparison of Eocene ( ∼ 50 Ma) climate model simulations and geological data has been carried out previously, models of past high-CO2 periods have never been evaluated in a consistent framework. Here, we present an experimental design for climate model simulations of three warm periods within the early Eocene and the latest Paleocene (the EECO, PETM, and pre-PETM). Together with the CMIP6 pre-industrial control and abrupt 4 × CO2 simulations, and additional sensitivity studies, these form the first phase of DeepMIP – the Deep-time Model Intercomparison Project, itself a group within the wider Paleoclimate Modelling Intercomparison Project (PMIP). The experimental design specifies and provides guidance on boundary conditions associated with palaeogeography, greenhouse gases, astronomical configuration, solar constant, land surface processes, and aerosols. Initial conditions, simulation length, and output variables are also specified. Finally, we explain how the geological data sets, which will be used to evaluate the simulations, will be developed.
Referência(s)