Artigo Acesso aberto Revisado por pares

Nerve Cells Decide to Orient inside an Injectable Hydrogel with Minimal Structural Guidance

2017; American Chemical Society; Volume: 17; Issue: 6 Linguagem: Inglês

10.1021/acs.nanolett.7b01123

ISSN

1530-6992

Autores

Jonas C. Rose, María Cámara-Torres, Khosrow Rahimi, Jens Köhler, Martin Möller, Laura De Laporte,

Tópico(s)

Electrospun Nanofibers in Biomedical Applications

Resumo

Injectable biomaterials provide the advantage of a minimally invasive application but mostly lack the required structural complexity to regenerate aligned tissues. Here, we report a new class of tissue regenerative materials that can be injected and form an anisotropic matrix with controlled dimensions using rod-shaped, magnetoceptive microgel objects. Microgels are doped with small quantities of superparamagnetic iron oxide nanoparticles (0.0046 vol %), allowing alignment by external magnetic fields in the millitesla order. The microgels are dispersed in a biocompatible gel precursor and after injection and orientation are fixed inside the matrix hydrogel. Regardless of the low volume concentration of the microgels below 3%, at which the geometrical constrain for orientation is still minimum, the generated macroscopic unidirectional orientation is strongly sensed by the cells resulting in parallel nerve extension. This finding opens a new, minimal invasive route for therapy after spinal cord injury.

Referência(s)