A Novel Spinal Implant for Fusionless Scoliosis Correction: A Biomechanical Analysis of the Motion Preserving Properties of a Posterior Periapical Concave Distraction Device
2017; SAGE Publishing; Volume: 7; Issue: 5 Linguagem: Inglês
10.1177/2192568217699377
ISSN2192-5690
AutoresRoderick M. Holewijn, Marinus de Kleuver, Albert J. van der Veen, Kaj S. Emanuel, Arno Bisschop, Agnita Stadhouder, Barend J. van Royen, Idsart Kingma,
Tópico(s)Spine and Intervertebral Disc Pathology
ResumoBiomechanical study.Recently, a posterior concave periapical distraction device for fusionless scoliosis correction was introduced. The goal of this study was to quantify the effect of the periapical distraction device on spinal range of motion (ROM) in comparison with traditional rigid pedicle screw-rod instrumentation.Using a spinal motion simulator, 6 human spines were loaded with 4 N m and 6 porcine spines with 2 N m to induce flexion-extension (FE), lateral bending (LB), and axial rotation (AR). ROM was measured in 3 conditions: untreated, periapical distraction device, and rigid pedicle screw-rod instrumentation.The periapical distraction device caused a significant (P < .05) decrease in ROM of FE (human, -40.0% and porcine, -55.9%) and LB (human, -18.2% and porcine, -17.9%) as compared to the untreated spine, while ROM of AR remained unaffected. In comparison, rigid instrumentation caused a significantly (P < .05) larger decrease in ROM of FE (human, -80.9% and porcine, -94.0%), LB (human, -75.0% and porcine, -92.2%), and AR (human, -71.3% and porcine, -86.9%).Although no destructive forces were applied, no device failures were observed. Spinal ROM was significantly less constrained by the periapical distraction device compared to rigid pedicle screw-rod instrumentation. Therefore, provided that scoliosis correction is achieved, a more physiological spinal motion is expected after scoliosis correction with the posterior concave periapical distraction device.
Referência(s)