EFAD transgenic mice as a human APOE relevant preclinical model of Alzheimerʼns disease
2017; Elsevier BV; Volume: 58; Issue: 9 Linguagem: Inglês
10.1194/jlr.r076315
ISSN1539-7262
AutoresLeon M. Tai, Deebika Balu, Evangelina Ávila-Muñoz, Laila Abdullah, Riya Thomas, N. Collins, Ana C. Valencia‐Olvera, Mary Jo LaDu,
Tópico(s)Computational Drug Discovery Methods
ResumoIdentified in 1993, APOE4 is the greatest genetic risk factor for sporadic Alzheimer'ns disease (AD), increasing risk up to 15-fold compared with APOE3, with APOE2 decreasing AD risk. However, the functional effects of APOE4 on AD pathology remain unclear and, in some cases, controversial. In vivo progress to understand how the human (h)-APOE genotypes affect AD pathology has been limited by the lack of a tractable familial AD-transgenic (FAD-Tg) mouse model expressing h-APOE rather than mouse (m)-APOE. The disparity between m- and h-apoE is relevant for virtually every AD-relevant pathway, including amyloid-β (Aβ) deposition and clearance, neuroinflammation, tau pathology, neural plasticity and cerebrovascular deficits. EFAD mice were designed as a temporally useful preclinical FAD-Tg-mouse model expressing the h-APOE genotypes for identifying mechanisms underlying APOE-modulated symptoms of AD pathology. From their first description in 2012, EFAD mice have enabled critical basic and therapeutic research. Here we review insights gleaned from the EFAD mice and summarize future directions. Identified in 1993, APOE4 is the greatest genetic risk factor for sporadic Alzheimer'ns disease (AD), increasing risk up to 15-fold compared with APOE3, with APOE2 decreasing AD risk. However, the functional effects of APOE4 on AD pathology remain unclear and, in some cases, controversial. In vivo progress to understand how the human (h)-APOE genotypes affect AD pathology has been limited by the lack of a tractable familial AD-transgenic (FAD-Tg) mouse model expressing h-APOE rather than mouse (m)-APOE. The disparity between m- and h-apoE is relevant for virtually every AD-relevant pathway, including amyloid-β (Aβ) deposition and clearance, neuroinflammation, tau pathology, neural plasticity and cerebrovascular deficits. EFAD mice were designed as a temporally useful preclinical FAD-Tg-mouse model expressing the h-APOE genotypes for identifying mechanisms underlying APOE-modulated symptoms of AD pathology. From their first description in 2012, EFAD mice have enabled critical basic and therapeutic research. Here we review insights gleaned from the EFAD mice and summarize future directions. In humans, Alzheimer'ns disease (AD) progresses over decades, resulting in synaptic dysfunction eventually leading to neuronal loss. Despite the large number of longitudinal aging studies in humans, the lack of cognitive measures coordinated with symptoms of AD pathology results in a poorly understood disease trajectory (1.Erten-Lyons D. Sherbakov L.O. Piccinin A.M. Hofer S.M. Dodge H.H. Quinn J.F. Woltjer R.L. Kramer P.L. Kaye J.A. Review of selected databases of longitudinal aging studies.Alzheimers Dement. 2012; 8: 584-589Abstract Full Text Full Text PDF PubMed Scopus (0) Google Scholar). Transgenic (Tg)-mice are a powerful tool to track AD pathology, address mechanistic hypothesis, and assess the activity of potential therapeutics. An overall limitation of all Tg-mouse models is that none reproduce the full spectrum of human AD symptoms and pathology. However, a number of reviews provide specific guidelines for preclinical AD studies with a consistent theme that a useful Tg-mouse model will incorporate major human AD risk factors and demonstrate dysfunction in the AD-relevant symptom of interest (2.Shineman D.W. Basi G.S. Bizon J.L. Colton C.A. Greenberg B.D. Hollister B.A. Lincecum J. Leblanc G.G. Lee L.B. Luo F. et al.Accelerating drug discovery for Alzheimer's disease: best practices for preclinical animal studies.Alzheimers Res. Ther. 2011; 3: 28Crossref PubMed Scopus (81) Google Scholar). Thus, critical to this modeling is the inclusion of the major human AD risk factors. The APOE4 genotype is the greatest genetic risk factor increasing AD risk up to 15-fold compared with the common APOE3 genotype, while APOE2 is protective (3.Reitz C. Mayeux R. Use of genetic variation as biomarkers for mild cognitive impairment and progression of mild cognitive impairment to dementia.J. Alzheimers Dis. 2010; 19: 229-251Crossref PubMed Scopus (41) Google Scholar, 4.Leoni V. The effect of apolipoprotein E (ApoE) genotype on biomarkers of amyloidogenesis, tau pathology and neurodegeneration in Alzheimer's disease.Clin. Chem. Lab. Med. 2011; 49: 375-383Crossref PubMed Google Scholar), but less frequent [estimated: ε2/2 at 0.4%, ε2/3 at 8.8%, and ε2/4 at 1.5% (5.Shinohara M. Kanekiyo T. Yang L. Linthicum D. Shinohara M. Fu Y. Price L. Frisch-Daiello J.L. Han X. Fryer J.D. et al.APOE2 eases cognitive decline during aging: clinical and preclinical evaluations.Ann. Neurol. 2016; (Epub ahead of print. March 2, doi:10.1002/ana.24628)Crossref PubMed Scopus (45) Google Scholar, 6.Farrer L.A. Cupples L.A. Haines J.L. Hyman B. Kukull W.A. Mayeux R. Myers R.H. Pericak-Vance M.A. Risch N. van Duijn C.M. Effects of age, sex, and ethnicity on the association between apolipoprotein E genotype and Alzheimer disease. A meta-analysis. APOE and Alzheimer Disease Meta Analysis Consortium.J. Am. Med. Assoc. 1997; 278: 1349-1356Crossref PubMed Google Scholar)]. Although this risk was identified in 1993 and a number of hypotheses propose APOE genotype-specific functions, the mechanistic pathways that cause APOE4-induced AD risk remain unclear. Even less understood is the critical link between female (♀) sex and the APOE4-induced AD risk (6.Farrer L.A. Cupples L.A. Haines J.L. Hyman B. Kukull W.A. Mayeux R. Myers R.H. Pericak-Vance M.A. Risch N. van Duijn C.M. Effects of age, sex, and ethnicity on the association between apolipoprotein E genotype and Alzheimer disease. A meta-analysis. APOE and Alzheimer Disease Meta Analysis Consortium.J. Am. Med. Assoc. 1997; 278: 1349-1356Crossref PubMed Google Scholar, 7.Breitner J.C. Wyse B.W. Anthony J.C. Welsh-Bohmer K.A. Steffens D.C. Norton M.C. Tschanz J.T. Plassman B.L. Meyer M.R. Skoog I. et al.APOE-epsilon4 count predicts age when prevalence of AD increases, then declines: the Cache County Study.Neurology. 1999; 53: 321-331Crossref PubMed Google Scholar, 8.Martinez M. Campion D. Brice A. Hannequin D. Dubois B. Didierjean O. Michon A. Thomas-Anterion C. Puel M. Frebourg T. et al.Apolipoprotein E epsilon4 allele and familial aggregation of Alzheimer disease.Arch. Neurol. 1998; 55: 810-816Crossref PubMed Scopus (0) Google Scholar, 9.Andersen K. Launer L.J. Dewey M.E. Letenneur L. Ott A. Copeland J.R. Dartigues J.F. Kragh-Sorensen P. Baldereschi M. Brayne C. et al.Gender differences in the incidence of AD and vascular dementia: The EURODEM Studies. EURODEM Incidence Research Group.Neurology. 1999; 53: 1992-1997Crossref PubMed Google Scholar, 10.Bretsky P.M. Buckwalter J.G. Seeman T.E. Miller C.A. Poirier J. Schellenberg G.D. Finch C.E. Henderson V.W. Evidence for an interaction between apolipoprotein E genotype, gender, and Alzheimer disease.Alzheimer Dis. Assoc. Disord. 1999; 13: 216-221Crossref PubMed Google Scholar, 11.Molero A.E. Pino-Ramirez G. Maestre G.E. Modulation by age and gender of risk for Alzheimer's disease and vascular dementia associated with the apolipoprotein E-epsilon4 allele in Latin Americans: findings from the Maracaibo Aging Study.Neurosci. Lett. 2001; 307: 5-8Crossref PubMed Scopus (0) Google Scholar, 12.Corder E.H. Ghebremedhin E. Taylor M.G. Thal D.R. Ohm T.G. Braak H. The biphasic relationship between regional brain senile plaque and neurofibrillary tangle distributions: modification by age, sex, and APOE polymorphism.Ann. N. Y. Acad. Sci. 2004; 1019: 24-28Crossref PubMed Scopus (152) Google Scholar, 13.Altmann A. Tian L. Henderson V.W. Greicius M.D. Alzheimer's Disease Neuroimaging Initiative Investigators Sex modifies the APOE-related risk of developing Alzheimer disease.Ann. Neurol. 2014; 75: 563-573Crossref PubMed Scopus (354) Google Scholar). As described, the sequence of pathology in human AD patients is unclear, however there are key AD-relevant outcomes that are modulated by APOE and sex in humans. AD is diagnosed by extracellular amyloid plaques and neurofibrillary tangles (NFTs) of tau. In addition, soluble oligomeric conformations of amyloid-β (oAβ) correlate with cognitive decline and disease severity (14.Larson M.E. Lesne S.E. Soluble Abeta oligomer production and toxicity.J. Neurochem. 2012; 120: 125-139Crossref PubMed Scopus (208) Google Scholar, 15.Selkoe D.J. Soluble oligomers of the amyloid beta-protein impair synaptic plasticity and behavior.Behav. Brain Res. 2008; 192: 106-113Crossref PubMed Scopus (831) Google Scholar, 16.Tu S. Okamoto S. Lipton S.A. Xu H. Oligomeric Abeta-induced synaptic dysfunction in Alzheimer's disease.Mol. Neurodegener. 2014; 9: 48Crossref PubMed Scopus (286) Google Scholar, 17.Klyubin I. Cullen W.K. Hu N.W. Rowan M.J. Alzheimer's disease Abeta assemblies mediating rapid disruption of synaptic plasticity and memory.Mol. Brain. 2012; 5: 25Crossref PubMed Scopus (51) Google Scholar, 18.McLean C.A. Cherny R.A. Fraser F.W. Fuller S.J. Smith M.J. Beyreuther K. Bush A.I. Masters C.L. Soluble pool of Abeta amyloid as a determinant of severity of neurodegeneration in Alzheimer's disease.Ann. Neurol. 1999; 46: 860-866Crossref PubMed Scopus (1519) Google Scholar, 19.Tomic J.L. Pensalfini A. Head E. Glabe C.G. Soluble fibrillar oligomer levels are elevated in Alzheimer's disease brain and correlate with cognitive dysfunction.Neurobiol. Dis. 2009; 35: 352-358Crossref PubMed Scopus (254) Google Scholar). Importantly, oAβ levels in cerebrospinal fluid (CSF) are increased in AD patients versus controls; and are greater with APOE4/4 versus APOE3/3 in AD patients (20.Tai L.M. Bilousova T. Jungbauer L. Roeske S.K. Youmans K.L. Yu C. Poon W.W. Cornwell L.B. Miller C.A. Vinters H.V. et al.Levels of soluble apolipoprotein E/amyloid-beta (Abeta) complex are reduced and oligomeric Abeta increased with APOE4 and Alzheimer disease in a transgenic mouse model and human samples.J. Biol. Chem. 2013; 288: 5914-5926Abstract Full Text Full Text PDF PubMed Scopus (0) Google Scholar). Further pathology includes neuronal dysfunction, neuroinflammation, and cerebrovascular dysfunction (CerVD). Hence, it is essential to study the interactive role of AD risk factors: age, sex and APOE genotype in the development of human AD pathology using mouse models. In vivo progress to determine the effects of the human (h)-APOE genotypes on AD pathology has been limited by the lack of a tractable familial AD-Tg (FAD-Tg) mouse model expressing h-APOE rather than mouse (m)-APOE [for complete review on the introduction of h-APOE into FAD-Tg mouse models see (21.Tai L.M. Youmans K.L. Jungbauer L. Yu C. Ladu M.J. Introducing human APOE into Abeta transgenic mouse models.Int. J. Alzheimers Dis. 2011; 2011: 810981PubMed Google Scholar)]. Why is this a critical issue? The m-apoE is structurally and functionally distinct from h-apoE. While the three human isoforms of apoE differ by a single amino acid change at residues 112 and 158 (apoE2Cys,Cys, apoE3Cys,Arg, apoE4Arg,Arg), m-apoE is expressed as a single isoform and differs from h-apoE by ∼100–300 amino acids. The disparity between m- and h-apoE is relevant for virtually all AD-relevant pathology, including Aβ deposition and clearance, neuroinflammation, tau pathology, neural plasticity, and CerVD (22.Trommer B.L. Shah C. Yun S.H. Gamkrelidze G. Pasternak E.S. Ye G.L. Sotak M. Sullivan P.M. Pasternak J.F. LaDu M.J. ApoE isoform affects LTP in human targeted replacement mice.Neuroreport. 2004; 15: 2655-2658Crossref PubMed Scopus (96) Google Scholar, 23.Trommer B.L. Shah C. Yun S.H. Gamkrelidze G. Pasternak E.S. Stine W.B. Manelli A. Sullivan P. Pasternak J.F. LaDu M.J. ApoE isoform-specific effects on LTP: blockade by oligomeric amyloid-beta1–42.Neurobiol. Dis. 2005; 18: 75-82Crossref PubMed Scopus (0) Google Scholar, 24.Bien-Ly N. Andrews-Zwilling Y. Xu Q. Bernardo A. Wang C. Huang Y. C-terminal-truncated apolipoprotein apoE4 inefficiently clears amyloid-β (Aβ) and acts in concert with Aβ to elicit neuronal and behavioral deficits in mice.Proc. Natl. Acad. Sci. USA. 2011; 108: 4236-4241Crossref PubMed Scopus (0) Google Scholar, 25.Zhu Y. Nwabuisi-Heath E. Dumanis S.B. Tai L.M. Yu C. Rebeck G.W. LaDu M.J. APOE genotype alters glial activation and loss of synaptic markers in mice.Glia. 2012; 60: 559-569Crossref PubMed Scopus (116) Google Scholar, 26.Liao F. Zhang T.J. Jiang H. Lefton K.B. Robinson G.O. Vassar R. Sullivan P.M. Holtzman D.M. Murine versus human apolipoprotein E4: differential facilitation of and co-localization in cerebral amyloid angiopathy and amyloid plaques in APP transgenic mouse models.Acta Neuropathol. Commun. 2015; 3: 70Crossref PubMed Scopus (29) Google Scholar, 27.Fagan A.M. Watson M. Parsadanian M. Bales K.R. Paul S.M. Holtzman D.M. Human and murine ApoE markedly alters A beta metabolism before and after plaque formation in a mouse model of Alzheimer's disease.Neurobiol. Dis. 2002; 9: 305-318Crossref PubMed Scopus (207) Google Scholar, 28.Fryer J.D. Simmons K. Parsadanian M. Bales K.R. Paul S.M. Sullivan P.M. Holtzman D.M. Human apolipoprotein E4 alters the amyloid-beta 40:42 ratio and promotes the formation of cerebral amyloid angiopathy in an amyloid precursor protein transgenic model.J. Neurosci. 2005; 25: 2803-2810Crossref PubMed Scopus (221) Google Scholar, 29.Oddo S. Caccamo A. Cheng D. LaFerla F.M. Genetically altering Abeta distribution from the brain to the vasculature ameliorates tau pathology.Brain Pathol. 2009; 19: 421-430Crossref PubMed Scopus (0) Google Scholar). Further, many APOE/FAD-Tg models express h-apoE under heterologous promoters that may be activated by stressors [glial fibrillary acidic protein (GFAP) (27.Fagan A.M. Watson M. Parsadanian M. Bales K.R. Paul S.M. Holtzman D.M. Human and murine ApoE markedly alters A beta metabolism before and after plaque formation in a mouse model of Alzheimer's disease.Neurobiol. Dis. 2002; 9: 305-318Crossref PubMed Scopus (207) Google Scholar, 30.Holtzman D.M. Bales K.R. Tenkova T. Fagan A.M. Parsadanian M. Sartorius L.J. Mackey B. Olney J. McKeel D. Wozniak D. et al.Apolipoprotein E isoform-dependent amyloid deposition and neuritic degeneration in a mouse model of Alzheimer's disease.Proc. Natl. Acad. Sci. USA. 2000; 97: 2892-2897Crossref PubMed Scopus (691) Google Scholar)], or by cell types that are not the primary producers of apoE [neuron-specific enolase (31.Buttini M. Yu G.Q. Shockley K. Huang Y. Jones B. Masliah E. Mallory M. Yeo T. Longo F.M. Mucke L. Modulation of Alzheimer-like synaptic and cholinergic deficits in transgenic mice by human apolipoprotein E depends on isoform, aging, and overexpression of amyloid beta peptides but not on plaque formation.J. Neurosci. 2002; 22: 10539-10548Crossref PubMed Google Scholar)], rather than the endogenous m-apoE promoter. Currently, the best option is the APOE-knock-in or targeted-replacement (TR) mice, developed to replace the coding domain for m-APOE with the coding domain of each of the h-APOE genotypes (32.Sullivan P.M. Mezdour H. Aratani Y. Knouff C. Najib J. Reddick R.L. Quarfordt S.H. Maeda N. Targeted replacement of the mouse apolipoprotein E gene with the common human APOE3 allele enhances diet-induced hypercholesterolemia and atherosclerosis.J. Biol. Chem. 1997; 272: 17972-17980Abstract Full Text Full Text PDF PubMed Scopus (370) Google Scholar). In APOE-TR mice, glial cells express h-APOE in a native conformation at physiologically regulated levels, and in the same temporal and spatial pattern as endogenous m-APOE. Thus, it is critical to conduct mechanistic and preclinical therapeutic studies in mice that incorporate h-APOE in a relevant context. Operationally, relative to m-APOE, the h-APOE genotypes delay AD pathology in FAD-Tg mouse models, as illustrated in Table 1. This table is designed to be a representation, using a composite of several FAD-Tg mouse models (27.Fagan A.M. Watson M. Parsadanian M. Bales K.R. Paul S.M. Holtzman D.M. Human and murine ApoE markedly alters A beta metabolism before and after plaque formation in a mouse model of Alzheimer's disease.Neurobiol. Dis. 2002; 9: 305-318Crossref PubMed Scopus (207) Google Scholar, 33.Dodart J.C. Meziane H. Mathis C. Bales K.R. Paul S.M. Ungerer A. Behavioral disturbances in transgenic mice overexpressing the V717F beta-amyloid precursor protein.Behav. Neurosci. 1999; 113: 982-990Crossref PubMed Google Scholar, 34.Hartman R.E. Izumi Y. Bales K.R. Paul S.M. Wozniak D.F. Holtzman D.M. Treatment with an amyloid-beta antibody ameliorates plaque load, learning deficits, and hippocampal long-term potentiation in a mouse model of Alzheimer's disease.J. Neurosci. 2005; 25: 6213-6220Crossref PubMed Scopus (121) Google Scholar, 35.Chen G. Chen K.S. Knox J. Inglis J. Bernard A. Martin S.J. Justice A. McConlogue L. Games D. Freedman S.B. et al.A learning deficit related to age and beta-amyloid plaques in a mouse model of Alzheimer's disease.Nature. 2000; 408: 975-979Crossref PubMed Scopus (9) Google Scholar, 36.Nilsson L.N. Arendash G.W. Leighty R.E. Costa D.A. Low M.A. Garcia M.F. Cracciolo J.R. Rojiani A. Wu X. Bales K.R. Paul S.M. Potter H. Cognitive impairment in PDAPP mice depends on ApoE and ACT-catalyzed amyloid formation.Neurobiol Aging. 2004; 25: 1153-1167Crossref PubMed Scopus (0) Google Scholar, 37.Games D. Adams D. Alessandrini R. Barbour R. Berthelette P. Blackwell C. Carr T. Clemens J. Donaldson T. Gillespie F. et al.Alzheimer-type neuropathology in transgenic mice overexpressing V717F β-amyloid precursor protein.Nature. 1995; 373: 523-527Crossref PubMed Scopus (2233) Google Scholar, 38.Johnson-Wood K. Lee M. Motter R. Hu K. Gordon G. Barbour R. Khan K. Gordon M. Tan H. Games D. et al.Amyloid precursor protein processing and A beta42 deposition in a transgenic mouse model of Alzheimer disease.Proc. Natl. Acad. Sci. USA. 1997; 94: 1550-1555Crossref PubMed Scopus (0) Google Scholar, 39.Bales K.R. Verina T. Cummins D.J. Du Y. Dodel R.C. Saura J. Fishman C.E. DeLong C.A. Piccardo P. Petegnief V. et al.Apolipoprotein E is essential for amyloid deposition in the APP(V717F) transgenic mouse model of Alzheimer's disease.Proc. Natl. Acad. Sci. USA. 1999; 96: 15233-15238Crossref PubMed Scopus (403) Google Scholar, 40.Dodart J.C. Mathis C. Bales K.R. Paul S.M. Ungerer A. Behavioral deficits in APP(V717F) transgenic mice deficient for the apolipoprotein E gene.Neuroreport. 2000; 11: 603-607Crossref PubMed Google Scholar, 41.Irizarry M.C. Soriano F. McNamara M. Page K.J. Schenk D. Games D. Hyman B.T. Abeta deposition is associated with neuropil changes, but not with overt neuronal loss in the human amyloid precursor protein V717F (PDAPP) transgenic mouse.J. Neurosci. 1997; 17: 7053-7059Crossref PubMed Google Scholar, 42.Masliah E. Sisk A. Mallory M. Games D. Neurofibrillary pathology in transgenic mice overexpressing V717F beta-amyloid precursor protein.J. Neuropathol. Exp. Neurol. 2001; 60: 357-368Crossref PubMed Google Scholar, 43.Hsiao K. Chapman P. Nilsen S. Eckman C. Harigaya Y. Youkin S. Yang F. Cole G. Correlative memory deficits, Aβ elevation, and amyloid plaques in transgenic mice.Science. 1996; 274: 99-102Crossref PubMed Scopus (3570) Google Scholar, 44.Irizarry M.C. McNamara M. Fedorchak K. Hsiao K. Hyman B.T. APPSw transgenic mice develop age-related A beta deposits and neuropil abnormalities, but no neuronal loss in CA1.J. Neuropathol. Exp. Neurol. 1997; 56: 965-973Crossref PubMed Google Scholar, 45.Yan P. Zhu A. Liao F. Xiao Q. Kraft A.W. Gonzales E. Perez R. Greenberg S.M. Holtzman D.M. Lee J.M. Minocycline reduces spontaneous hemorrhage in mouse models of cerebral amyloid angiopathy.Stroke. 2015; 46: 1633-1640Crossref PubMed Scopus (20) Google Scholar, 46.Irizarry M.C. Rebeck G.W. Cheung B. Bales K. Paul S.M. Holzman D. Hyman B.T. Modulation of A beta deposition in APP transgenic mice by an apolipoprotein E null background.Ann. N. Y. Acad. Sci. 2000; 920: 171-178Crossref PubMed Google Scholar) and Aβ pathology as an example of AD phenotype. First, Aβ pathology is significantly delayed when FAD-Tg mice are crossed with APOE-KO mice, eliminating m-APOE (Table 1: compare A to B) (27.Fagan A.M. Watson M. Parsadanian M. Bales K.R. Paul S.M. Holtzman D.M. Human and murine ApoE markedly alters A beta metabolism before and after plaque formation in a mouse model of Alzheimer's disease.Neurobiol. Dis. 2002; 9: 305-318Crossref PubMed Scopus (207) Google Scholar, 30.Holtzman D.M. Bales K.R. Tenkova T. Fagan A.M. Parsadanian M. Sartorius L.J. Mackey B. Olney J. McKeel D. Wozniak D. et al.Apolipoprotein E isoform-dependent amyloid deposition and neuritic degeneration in a mouse model of Alzheimer's disease.Proc. Natl. Acad. Sci. USA. 2000; 97: 2892-2897Crossref PubMed Scopus (691) Google Scholar, 39.Bales K.R. Verina T. Cummins D.J. Du Y. Dodel R.C. Saura J. Fishman C.E. DeLong C.A. Piccardo P. Petegnief V. et al.Apolipoprotein E is essential for amyloid deposition in the APP(V717F) transgenic mouse model of Alzheimer's disease.Proc. Natl. Acad. Sci. USA. 1999; 96: 15233-15238Crossref PubMed Scopus (403) Google Scholar, 40.Dodart J.C. Mathis C. Bales K.R. Paul S.M. Ungerer A. Behavioral deficits in APP(V717F) transgenic mice deficient for the apolipoprotein E gene.Neuroreport. 2000; 11: 603-607Crossref PubMed Google Scholar, 46.Irizarry M.C. Rebeck G.W. Cheung B. Bales K. Paul S.M. Holzman D. Hyman B.T. Modulation of A beta deposition in APP transgenic mice by an apolipoprotein E null background.Ann. N. Y. Acad. Sci. 2000; 920: 171-178Crossref PubMed Google Scholar). Second, Aβ pathology is further delayed when h-APOE-Tg mice are crossed with FAD-Tg/APOE-KO mice (Table 1: compare B to C) (28.Fryer J.D. Simmons K. Parsadanian M. Bales K.R. Paul S.M. Sullivan P.M. Holtzman D.M. Human apolipoprotein E4 alters the amyloid-beta 40:42 ratio and promotes the formation of cerebral amyloid angiopathy in an amyloid precursor protein transgenic model.J. Neurosci. 2005; 25: 2803-2810Crossref PubMed Scopus (221) Google Scholar, 30.Holtzman D.M. Bales K.R. Tenkova T. Fagan A.M. Parsadanian M. Sartorius L.J. Mackey B. Olney J. McKeel D. Wozniak D. et al.Apolipoprotein E isoform-dependent amyloid deposition and neuritic degeneration in a mouse model of Alzheimer's disease.Proc. Natl. Acad. Sci. USA. 2000; 97: 2892-2897Crossref PubMed Scopus (691) Google Scholar, 47.Bales K.R. Liu F. Wu S. Lin S. Koger D. DeLong C. Hansen J.C. Sullivan P.M. Paul S.M. Human APOE isoform-dependent effects on brain beta-amyloid levels in PDAPP transgenic mice.J. Neurosci. 2009; 29: 6771-6779Crossref PubMed Scopus (189) Google Scholar, 48.Castellano J.M. Kim J. Stewart F.R. Jiang H. DeMattos R.B. Patterson B.W. Fagan A.M. Morris J.C. Mawuenyega K.G. Cruchaga C. et al.Human apoE isoforms differentially regulate brain amyloid-beta peptide clearance.Sci. Transl. Med. 2011; 3: 89ra57Crossref PubMed Scopus (713) Google Scholar). Thus, incorporation of h-APOE into FAD-Tg mice that normally begin to develop pathology at 8–10 months delays the development of pathology to 12–16 months (27.Fagan A.M. Watson M. Parsadanian M. Bales K.R. Paul S.M. Holtzman D.M. Human and murine ApoE markedly alters A beta metabolism before and after plaque formation in a mouse model of Alzheimer's disease.Neurobiol. Dis. 2002; 9: 305-318Crossref PubMed Scopus (207) Google Scholar, 28.Fryer J.D. Simmons K. Parsadanian M. Bales K.R. Paul S.M. Sullivan P.M. Holtzman D.M. Human apolipoprotein E4 alters the amyloid-beta 40:42 ratio and promotes the formation of cerebral amyloid angiopathy in an amyloid precursor protein transgenic model.J. Neurosci. 2005; 25: 2803-2810Crossref PubMed Scopus (221) Google Scholar, 30.Holtzman D.M. Bales K.R. Tenkova T. Fagan A.M. Parsadanian M. Sartorius L.J. Mackey B. Olney J. McKeel D. Wozniak D. et al.Apolipoprotein E isoform-dependent amyloid deposition and neuritic degeneration in a mouse model of Alzheimer's disease.Proc. Natl. Acad. Sci. USA. 2000; 97: 2892-2897Crossref PubMed Scopus (691) Google Scholar, 47.Bales K.R. Liu F. Wu S. Lin S. Koger D. DeLong C. Hansen J.C. Sullivan P.M. Paul S.M. Human APOE isoform-dependent effects on brain beta-amyloid levels in PDAPP transgenic mice.J. Neurosci. 2009; 29: 6771-6779Crossref PubMed Scopus (189) Google Scholar, 48.Castellano J.M. Kim J. Stewart F.R. Jiang H. DeMattos R.B. Patterson B.W. Fagan A.M. Morris J.C. Mawuenyega K.G. Cruchaga C. et al.Human apoE isoforms differentially regulate brain amyloid-beta peptide clearance.Sci. Transl. Med. 2011; 3: 89ra57Crossref PubMed Scopus (713) Google Scholar), extending progression of the full array of AD-related symptoms beyond the lifespan of the mouse. One approach to address this h-APOE-induced temporal delay in AD pathology is using an FAD-Tg mouse that has rapid-onset AD pathology. The 5xFAD mice exhibit accelerated development of pathology, including amyloid deposition by 2 months (Table 1: compare A to D) (49.Ohno M. Chang L. Tseng W. Oakley H. Citron M. Klein W.L. Vassar R. Disterhoft J.F. Temporal memory deficits in Alzheimer's mouse models: rescue by genetic deletion of BACE1.Eur. J. Neurosci. 2006; 23: 251-260Crossref PubMed Scopus (211) Google Scholar, 50.Oakley H. Cole S.L. Logan S. Maus E. Shao P. Craft J. Guillozet-Bongaarts A. Ohno M. Disterhoft J. Van Eldik L. et al.Intraneuronal beta-amyloid aggregates, neurodegeneration, and neuron loss in transgenic mice with five familial Alzheimer's disease mutations: potential factors in amyloid plaque formation.J. Neurosci. 2006; 26: 10129-10140Crossref PubMed Scopus (1636) Google Scholar, 51.Shukla V. Zheng Y.L. Mishra S.K. Amin N.D. Steiner J. Grant P. Kesavapany S. Pant H.C. A truncated peptide from p35, a Cdk5 activator, prevents Alzheimer's disease phenotypes in model mice.FASEB J. 2013; 27: 174-186Crossref PubMed Scopus (83) Google Scholar, 52.Devi L. Ohno M. Genetic reductions of beta-site amyloid precursor protein-cleaving enzyme 1 and amyloid-beta ameliorate impairment of conditioned taste aversion memory in 5XFAD Alzheimer's disease model mice.Eur. J. Neurosci. 2010; 31: 110-118Crossref PubMed Scopus (0) Google Scholar, 53.Devi L. Ohno M. Phospho-eIF2alpha level is important for determining abilities of BACE1 reduction to rescue cholinergic neurodegeneration and memory defects in 5XFAD mice.PLoS One. 2010; 5: e12974Crossref PubMed Scopus (0) Google Scholar, 54.Devi L. Ohno M. Mitochondrial dysfunction and accumulation of the beta-secretase-cleaved C-terminal fragment of APP in Alzheimer's disease transgenic mice.Neurobiol. Dis. 2012; 45: 417-424Crossref PubMed Scopus (75) Google Scholar, 55.Hüttenrauch M. Walter S. Kaufmann M. Weggen S. Wirths O. Limited effects of prolonged environmental enrichment on the pathology of 5XFAD mice.Mol. Neurobiol. 2016; (Epub ahead of print. October 12, doi:10.1007/s12035-016-0167-x)PubMed Google Scholar, 56.Kimura R. Ohno M. Impairments in remote memory stabilization precede hippocampal synaptic and cognitive failures in 5XFAD Alzheimer mouse model.Neurobiol. Dis. 2009; 33: 229-235Crossref PubMed Scopus (171) Google Scholar, 57.Kaczorowski C.C. Sametsky E. Shah S. Vassar R. Disterhoft J.F. Mechanisms underlying basal and learning-related intrinsic excitability in a mouse model of Alzheimer's disease.Neurobiol. Aging. 2011; 32: 1452-1465Crossref PubMed Scopus (0) Google Scholar, 58.Ohno M. Cole S.L. Yasvoina M. Zhao J. Citron M. Berry R. Disterhoft J.F. Vassar R. BACE1 gene deletion prevents neuron loss and memory deficits in 5XFAD APP/PS1 transgenic mice.Neurobiol. Dis. 2007; 26: 134-145Crossref PubMed Scopus (228) Google Scholar, 59.Kanno T. Tsuchiya A. Nishizaki T. Hyperphosphorylation of Tau at Ser396 occurs in the much earlier stage than appearance of learning and memory disorders in 5XFAD mice.Behav. Brain Res. 2014; 274: 302-306Crossref PubMed Scopus (0) Google Scholar, 60.Urano T. Tohda C. Icariin improves memory impairment in Alzheimer's disease model mice (5xFAD) and attenuates amyloid beta-induced neurite atrophy.Phytother. Res. 2010; 24: 1658-1663Crossref PubMed Scopus (0) Google Scholar, 61.Kalinin S. Polak P.E. Lin S.X. Sakharkar A.J. Pandey S.C. Feinstein D.L. The noradrenaline precursor L-DOPS reduces pathology in a mouse model of Alzheimer's disease.Neurobiol. Aging. 2012; 33: 1651-1663Crossref PubMed Scopus (54) Google Scholar, 62.Jawhar S. Trawicka A. Jenneckens C. Bayer T.A. Wirths O. Motor deficits, neuron loss, and reduced anxiety coinciding with axonal degeneration and intraneuronal Abeta aggregation in the 5XFAD mouse model of Alzheimer's disease.Neurobiol. Aging. 2012; 33: 196.e29-196.e40Crossref PubMed Scopus (0) Google Scholar, 63.Eimer W.A. Vassar R. Neuron loss in the 5XFAD mouse model of Alzheimer's disease correlates with intraneuronal Abeta42 accumulation and Caspase-3 activation.Mol. Neurodegener. 2013; 8: 2Crossref PubMed Scopus (0) Google Scholar, 64.Bhattacharya S. Haertel C. Maelicke A. Montag D. Galantamine slows down plaque formation and behavioral decline in the 5XFAD mouse model of Alzheimer's disease.PLoS One. 2014; 9: e89454Crossref PubMed Scopus (0) Google Scholar, 65.Spencer N.G. Lovell D.P. Elderfield K. Austen B. Howe F.A. Can MRI T1 be used to detect early changes in 5xFAD Alzheimer's mouse brain?.MAGMA. 2017; 30: 153-163Crossref PubMed Scopus (2) Google Scholar, 66.Youmans K.L. Tai L.M. Nwabuisi-Heath E. Jungbauer L. Kanekiyo T. Gan M. Kim J. Eimer W.A. Estus S. Rebeck G.W. et al.APOE4-specific changes in Abeta accumulation in a new transgenic mouse model of Alzheimer disease.J. Biol. Chem. 2012; 287: 41774-41786Abstract Full Text Full Text PDF PubMed Scopus (154) Google Scholar, 67.Youmans K.L. Leung S. Zhang J. Maus E. Baysac K. Bu G. Vassar R. Yu C. Ladu M.J. Amyloid-beta42 alters apolipoprotein E solubility in brains of mice with five familial AD mutations.J. Neurosci. Methods. 2011; 196: 51-59Crossref PubMed Scopus (29) Google Scholar, 68.Shao C.Y. Mirra S.S. Sait H.B. Sacktor T.C. Sigurdsson E.M. Postsynaptic degeneration as revealed by PSD-95 reduction occurs after ad
Referência(s)