Denaturation of proteins by surfactants studied by the Taylor dispersion analysis
2017; Public Library of Science; Volume: 12; Issue: 4 Linguagem: Inglês
10.1371/journal.pone.0175838
ISSN1932-6203
AutoresAldona Jelińska, Anna Zagożdżon, Marcin Górecki, Agnieszka Wiśniewska, Jadwiga Frelek, Robert Hołyst,
Tópico(s)Surfactants and Colloidal Systems
ResumoWe showed that the Taylor Dispersion Analysis (TDA) is a fast and easy to use method for the study of denaturation proteins. We applied TDA to study denaturation of β-lactoglobulin, transferrin, and human insulin by anionic surfactant sodium dodecyl sulfate (SDS). A series of measurements at constant protein concentration (for transferrin was 1.9 x 10-5 M, for β- lactoglobulin was 7.6 x 10-5 M, and for insulin was 1.2 x 10-4 M) and varying SDS concentrations were carried out in the phosphate-buffered saline (PBS). The structural changes were analyzed based on the diffusion coefficients of the complexes formed at various surfactant concentrations. The concentration of surfactant was varied in the range from 1.2 x 10-4 M to 8.7 x 10-2 M. We determined the minimum concentration of the surfactant necessary to change the native conformation of the proteins. The minimal concentration of SDS for β-lactoglobulin and transferrin was 4.3 x 10-4 M and for insulin 2.3 x 10-4 M. To evaluate the TDA as a novel method for studying denaturation of proteins we also applied other methods i.e. electronic circular dichroism (ECD) and dynamic light scattering (DLS) to study the same phenomenon. The results obtained using these methods were in agreement with the results from TDA.
Referência(s)