Artigo Acesso aberto Revisado por pares

On the orientational dependence of drag experienced by spheroids

2017; Cambridge University Press; Volume: 820; Linguagem: Inglês

10.1017/jfm.2017.239

ISSN

1469-7645

Autores

Sathish K. P. Sanjeevi, Johan T. Padding,

Tópico(s)

Aerosol Filtration and Electrostatic Precipitation

Resumo

The flow around different prolate (needle-like) and oblate (disc-like) spheroids is studied using a multi-relaxation-time lattice Boltzmann method. We compute the mean drag coefficient $C_{D,\unicode[STIX]{x1D719}}$ at different incident angles $\unicode[STIX]{x1D719}$ for a wide range of Reynolds numbers ( $\mathit{Re}$ ). We show that the sine-squared drag law $C_{D,\unicode[STIX]{x1D719}}=C_{D,\unicode[STIX]{x1D719}=0^{\circ }}+(C_{D,\unicode[STIX]{x1D719}=90^{\circ }}-C_{D,\unicode[STIX]{x1D719}=0^{\circ }})\sin ^{2}\unicode[STIX]{x1D719}$ holds up to large Reynolds numbers, $\mathit{Re}=2000$ . Further, we explore the physical origin behind the sine-squared law, and reveal that, surprisingly, this does not occur due to linearity of flow fields. Instead, it occurs due to an interesting pattern of pressure distribution contributing to the drag at higher $\mathit{Re}$ for different incident angles. The present results demonstrate that it is possible to perform just two simulations at $\unicode[STIX]{x1D719}=0^{\circ }$ and $\unicode[STIX]{x1D719}=90^{\circ }$ for a given $\mathit{Re}$ and obtain particle-shape-specific $C_{D}$ at arbitrary incident angles. However, the model has limited applicability to flatter oblate spheroids, which do not exhibit the sine-squared interpolation, even for $\mathit{Re}=100$ , due to stronger wake-induced drag. Regarding lift coefficients, we find that the equivalent theoretical equation can provide a reasonable approximation, even at high $\mathit{Re}$ , for prolate spheroids.

Referência(s)