Artigo Revisado por pares

Investigation into the Practicability of Differential Lift-Based Spacecraft Rendezvous

2017; American Institute of Aeronautics and Astronautics; Volume: 40; Issue: 10 Linguagem: Inglês

10.2514/1.g002537

ISSN

1533-3884

Autores

Brenton Smith, Russell Boyce, Melrose Brown, Matthew Garratt,

Tópico(s)

Astro and Planetary Science

Resumo

No AccessEngineering NoteInvestigation into the Practicability of Differential Lift-Based Spacecraft RendezvousBrenton Smith, Russell Boyce, Laurie Brown and Matthew GarrattBrenton SmithUniversity of New South Wales Canberra, Canberra, Australian Capital Territory 2600, Australia, Russell BoyceUniversity of New South Wales Canberra, Canberra, Australian Capital Territory 2600, Australia, Laurie BrownUniversity of New South Wales Canberra, Canberra, Australian Capital Territory 2600, Australia and Matthew GarrattUniversity of New South Wales Canberra, Canberra, Australian Capital Territory 2600, AustraliaPublished Online:18 May 2017https://doi.org/10.2514/1.G002537SectionsRead Now ToolsAdd to favoritesDownload citationTrack citations ShareShare onFacebookTwitterLinked InRedditEmail About References [1] Shiroma W. A. and Lu F. K., Emergence of Pico- and Nanosatellites for Atmospheric Research and Technology Testing, Vol. 234, AIAA, Reston, VA, 2010, pp. 3–14. LinkGoogle Scholar[2] "Space Report: The Authoritative Guide to Global Space Activity," Space Foundation, Colorado Springs, CO, 2015. Google Scholar[3] Ng A., De Ruiter A., Lee J., Lambert C., Hamel J. F., de Lafontaine J. and Kumar B. S., "Overview of Japan-Canada Joint Collaboration Satellites (JC2Sat) GNC Challenges and Design," AIAA Guidance, Navigation, and Control Conference, AIAA Paper 2010-7765, Aug. 2010. LinkGoogle Scholar[4] Gill E., Sundaramoorthy P., Bouwmeester J., Zandbergen B. and Reinhard R., "Formation Flying Within a Constellation of Nano-Satellites: The QB50 Mission," Acta Astronautica, Vol. 82, No. 1, 2013, pp. 110–117. doi:https://doi.org/10.1016/j.actaastro.2012.04.029 AASTCF 0094-5765 CrossrefGoogle Scholar[5] Gurfil P., Herscovitz J. and Pariente M., "The SAMSON Project—Cluster Flight and Geolocation with Three Autonomous Nano-Satellites," Proceedings of the 26th AIAA/USU Conference on Small Satellites, Utah State Univ., SSC Paper SSC12-VII-2, 2012, http://digitalcommons.usu.edu/smallsat/2012/all2012/56/. Google Scholar[6] Bandyopadhyay S., Subramanian G. P., Foust R., Morgan D., Chung S. and Hadaegh F. Y., "A Review of Impending Small Satellite Formation Flying Missions," 53rd AIAA Aerospace Sciences Meeting, AIAA Paper 2015-1623, 2015. LinkGoogle Scholar[7] Leonard C. L., Hollister W. M. and Bergmann E. V., "Orbital Formationkeeping with Differential Drag," Journal of Guidance, Control, and Dynamics, Vol. 12, No. 1, 1989, pp. 108–113. doi:https://doi.org/10.2514/3.20374 JGCODS 0731-5090 LinkGoogle Scholar[8] Bevilacqua R. and Romano M., "Rendezvous Maneuvers of Multiple Spacecraft Using Differential Drag Under J2 Perturbation," Journal of Guidance, Control, and Dynamics, Vol. 31, No. 6, 2008, pp. 1595–1607. doi:https://doi.org/10.2514/1.36362 JGCODS 0731-5090 LinkGoogle Scholar[9] Ben-Yaacov O. and Gurfil P., "Stability and Performance of Orbital Elements Feedback for Cluster Keeping Using Differential Drag," Journal of the Astronautical Sciences, Vol. 61, No. 2, 2014, pp. 198–226. doi:https://doi.org/10.1007/s40295-014-0022-0 JALSA6 0021-9142 CrossrefGoogle Scholar[10] Miele A. and Venkataraman P., "Optimal Trajectories for Aeroassisted Orbital Transfer," Acta Astronautica, Vol. 11, No. 7, 1984, pp. 423–433. doi:https://doi.org/10.1016/0094-5765(84)90083-3 AASTCF 0094-5765 CrossrefGoogle Scholar[11] Horsley M., Nikolaev S. and Pertica A., "Small Satellite Rendezvous Using Differential Lift and Drag," Journal of Guidance, Control, and Dynamics, Vol. 36, No. 2, 2013, pp. 445–453. doi:https://doi.org/10.2514/1.57327 JGCODS 0731-5090 LinkGoogle Scholar[12] Shao X., Song M., Zhang D. and Sun R., "Satellite Rendezvous Using Differential Aerodynamic Forces Under J2 Perturbation," Aircraft Engineering and Aerospace Technology, Vol. 87, No. 5, 2015, pp. 427–436. doi:https://doi.org/10.1108/AEAT-09-2013-0168 AATEEB CrossrefGoogle Scholar[13] Clohessy W. H. and Wiltshire R. S., "Terminal Guidance System for Satellite Rendezvous," Journal of the Aerospace Sciences, Vol. 27, No. 9, 1960, pp. 653–658. doi:https://doi.org/10.2514/8.8704 LinkGoogle Scholar[14] Schweighart S. A. and Sedwick R. J., "High-Fidelity Linearized J2 Model for Satellite Formation Flight," Journal of Guidance, Control, and Dynamics, Vol. 25, No. 6, 2002, pp. 1073–1080. doi:https://doi.org/10.2514/2.4986 JGCODS 0731-5090 LinkGoogle Scholar[15] Perez D. and Bevilacqua R., "Spacecraft Maneuvering via Atmospheric Differential Drag Using an Adaptive Lyapunov Controller," Proceedings of the 23rd AAS/AIAA Space Flight Mechanics Meeting, American Astronautical Soc. Paper 13-440, Springfield, VA, 2013. Google Scholar[16] Perez D. and Bevilacqua R., "Differential Drag Spacecraft Rendezvous Using an Adaptive Lyapunov Control Strategy," Acta Astronautica, Vol. 83, Feb.–March 2013, pp. 196–207. doi:https://doi.org/10.1016/j.actaastro.2012.09.005 AASTCF 0094-5765 CrossrefGoogle Scholar[17] Mazal L., Perez D. and Bevilacqua R., "Spacecraft Rendezvous by Differential Drag Under Uncertainties," Journal of Guidance, Control, and Dynamics, Vol. 39, No. 8, 2016, pp. 1721–1733. doi:https://doi.org/10.2514/1.G001785 JGCODS 0731-5090 LinkGoogle Scholar[18] Perez D. and Bevilacqua R., "Lyapunov-Based Adaptive Feedback for Spacecraft Planar Relative Maneuvering via Differential Drag," Journal of Guidance, Control, and Dynamics, Vol. 37, No. 5, 2014, pp. 1678–1684. doi:https://doi.org/10.2514/1.G000191 JGCODS 0731-5090 LinkGoogle Scholar[19] Perez D. and Bevilacqua R., "Lyapunov-Based Spacecraft Rendezvous Maneuvers Using Differential Drag," AIAA Guidance, Navigation, and Control Conference, AIAA Paper 2011-6630, Aug. 2011. LinkGoogle Scholar[20] Bevilacqua R. and Lovell T. A., "Analytical Guidance for Spacecraft Relative Motion Under Constant Thrust Using Relative Orbit Elements," Acta Astronautica, Vol. 102, Sept.–Oct. 2014, pp. 47–61. doi:https://doi.org/10.1016/j.actaastro.2014.05.004 AASTCF 0094-5765 CrossrefGoogle Scholar Previous article Next article FiguresReferencesRelatedDetailsCited byA planning tool for optimal three-dimensional formation flight maneuvers of satellites in VLEO using aerodynamic lift and drag via yaw angle deviationsActa Astronautica, Vol. 198Propulsionless planar phasing of multiple satellites using deep reinforcement learningAdvances in Space Research, Vol. 67, No. 11Enhanced algorithms to ensure the success of rendezvous maneuvers using aerodynamic forces19 April 2021 | CEAS Space Journal, Vol. 117Ionospheric drag for accelerated deorbit from upper low earth orbitActa Astronautica, Vol. 176Improved success rates of rendezvous maneuvers using aerodynamic forces24 April 2020 | CEAS Space Journal, Vol. 12, No. 3On the exploitation of differential aerodynamic lift and drag as a means to control satellite formation flight27 May 2019 | CEAS Space Journal, Vol. 12, No. 1Influence of energy accommodation on a robust spacecraft rendezvous maneuver using differential aerodynamic forces5 June 2019 | CEAS Space Journal, Vol. 12, No. 1Ionospheric Drag for Satellite Formation ControlBrenton Smith, Christopher Capon and Melrose Brown9 October 2019 | Journal of Guidance, Control, and Dynamics, Vol. 42, No. 12Design considerations for an optical link supporting intersatellite quantum key distributionOptical Engineering, Vol. 58, No. 01Study of satellite formation flying control using differential lift and dragActa Astronautica, Vol. 152 What's Popular Volume 40, Number 10October 2017 CrossmarkInformationCopyright © 2017 by Brenton Smith. Published by the American Institute of Aeronautics and Astronautics, Inc., with permission. All requests for copying and permission to reprint should be submitted to CCC at www.copyright.com; employ the ISSN 0731-5090 (print) or 1533-3884 (online) to initiate your request. See also AIAA Rights and Permissions www.aiaa.org/randp. TopicsAerodynamicsAeronautical EngineeringAeronauticsAerospace SciencesAstrodynamicsAstronauticsAstronomyCelestial Coordinate SystemCelestial MechanicsOrbital ManeuversOrbital PropertyPlanetary Science and ExplorationPlanetsSolar PhysicsSpace MissionsSpace OrbitSpace RendezvousSpace Science and Technology KeywordsSpacecraft RendezvousMonte Carlo AnalysisSatellite FormationEarth Centered InertialEarthPropellantSpacecraft FormationAerodynamic DragAdaptive Control MethodCost EffectivenessPDF Received7 November 2016Accepted20 February 2017Published online18 May 2017

Referência(s)