Revisão Revisado por pares

Energy-sensitive cryogenic detectors for high-mass biomolecule mass spectrometry

1999; Wiley; Volume: 18; Issue: 3-4 Linguagem: Inglês

10.1002/(sici)1098-2787(1999)18

ISSN

1098-2787

Autores

Matthias Frank, Simon E. Labov, Garrett Westmacott, W. Henry Benner,

Tópico(s)

thermodynamics and calorimetric analyses

Resumo

Mass Spectrometry ReviewsVolume 18, Issue 3-4 p. 155-186 Review Energy-sensitive cryogenic detectors for high-mass biomolecule mass spectrometry† Matthias Frank, Corresponding Author Matthias Frank Lawrence Livermore National Laboratory, Physics Directorate, V-Division, Livermore, CA 94551Lawrence Livermore National Laboratory, P.O. Box 808, Mail Stop L-418, Livermore, CA 94551Search for more papers by this authorSimon E. Labov, Simon E. Labov Lawrence Livermore National Laboratory, Physics Directorate, V-Division, Livermore, CA 94551Search for more papers by this authorGarrett Westmacott, Garrett Westmacott Lawrence Berkeley National Laboratory, Human Genome Center Instrumentation Group, 1 Cyclotron Rd., Berkeley, CA 94720Search for more papers by this authorW. Henry Benner, W. Henry Benner Lawrence Berkeley National Laboratory, Human Genome Center Instrumentation Group, 1 Cyclotron Rd., Berkeley, CA 94720Search for more papers by this author Matthias Frank, Corresponding Author Matthias Frank Lawrence Livermore National Laboratory, Physics Directorate, V-Division, Livermore, CA 94551Lawrence Livermore National Laboratory, P.O. Box 808, Mail Stop L-418, Livermore, CA 94551Search for more papers by this authorSimon E. Labov, Simon E. Labov Lawrence Livermore National Laboratory, Physics Directorate, V-Division, Livermore, CA 94551Search for more papers by this authorGarrett Westmacott, Garrett Westmacott Lawrence Berkeley National Laboratory, Human Genome Center Instrumentation Group, 1 Cyclotron Rd., Berkeley, CA 94720Search for more papers by this authorW. Henry Benner, W. Henry Benner Lawrence Berkeley National Laboratory, Human Genome Center Instrumentation Group, 1 Cyclotron Rd., Berkeley, CA 94720Search for more papers by this author First published: 28 October 1999 https://doi.org/10.1002/(SICI)1098-2787(1999)18:3/4 3.0.CO;2-WCitations: 69 † This article is a US Government work and, as such, is in the public domain in the United States of America. AboutPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShare Give accessShare full text accessShare full-text accessPlease review our Terms and Conditions of Use and check box below to share full-text version of article.I have read and accept the Wiley Online Library Terms and Conditions of UseShareable LinkUse the link below to share a full-text version of this article with your friends and colleagues. Learn more.Copy URL Abstract Energy-sensitive calorimetric detectors that operate at low temperatures (“cryogenic detectors”) have recently been applied for the first time as ion detectors in time-of-flight mass spectrometry. Compared to conventional, ionization-based detectors, which rely on secondary electron formation or the charge created in a semiconductor, cryogenic detectors measure low-energy solid state excitations created by a particle impact. This energy sensitivity of cryogenic detectors results in several potential advantages for TOF–MS. Cryogenic detectors are expected to have near 100% efficiency even for very large, slow-moving molecules, in contrast to microchannel plates whose efficiency drops considerably at large mass. Thus, cryogenic detectors could contribute to extending the mass range accessible by TOF–MS and help improving detection limits. In addition, the energy resolution provided by cryogenic detectors can be used for charge discrimination and studies of ion fragmentation, ion-detector interaction, and internal energies of large molecular ions. Cryogenic detectors could therefore prove to be a valuable diagnostic tool in TOF–MS. Here, we give a general introduction to the cryogenic detector types most applicable to TOF–MS including those types already used in several TOF–MS experiments. We review and compare the results of these experiments, discuss practical aspects of operating cryogenic detectors in TOF–MS systems, and describe potential near future improvements of cryogenic detectors for applications in mass spectrometry. © 1999 John Wiley & Sons, Inc., Mass Spec Rev 18: 155–186, 1999 References Alessandrello A, Beeman JW, Brofferio C, Cremonesi O, Fiorini E, Giuliani A, Haller EE, Monfardini A, Nucciotti A, Pavan M, Pessina G, Previtali E, Zanotti L. 1999. High energy resolution bolometers for nuclear physics and X- ray spectroscopy. Physical Rev Letters 82: 513– 515. Ashcroft NW, Mermin ND. 1976. Solid state physics. Philadelphia: Holt, Rinehart and Winston. Axelson J, Reimann CT, Sundqvist BUR. 1994. Secondary electron resolved mass spectrometry of electrosprayed ions. Int J Mass Spectrom Ion Processes 133: 141– 155. Bae YK, Beuhler RJ, Chu YY, Friedlander G, Xu Y, Friedman L. 1996. Detection of accelerated water cluster ions and electrosprayed biomolecules with passivated solid state detectors. Nuclear Instruments and Methods in Physics Research B 114: 185– 190. Bahr U, Karas M, Hillenkamp F. 1994. Analysis of biopolymers by matrix-assisted laser desorption/ionization (MALDI) mass spectrometry. Fresenius J Anal Chem 348: 783– 791. Bahr U, Stahl-Zeng J, Gleitsmann E, Karas M. 1997. Delayed extraction time-of-flight MALDI mass spectrometry of proteins above 25 000 Da. J Mass Spectrom 32: 1111– 1116. Baragiola RA, Alonso EV, Oliva A. 1993. Principles and mechanisms of ion induced electron emission. Nuclear Instruments & Methods in Physics Research B 78: 223– 238. Bassi D, Boschetti A, Scotoni M, Zen M. 1981. Molecular beam diagnostics by means of fast superconducting bolometer and pulsed infrared laser. Applied Physics B 26: 99– 103. Bassi D, Dondi MG, Tommasini F, Torello F, Valbusa U. 1976. H-Ar potential from high-resolution differential cross-section measurements at thermal energy. Physical Rev A 13: 584– 594. Benner WH, Horn DM, Jaklevic JM, Frank M, Mears CA, Labov SE, Barfknecht AT. 1997a. Simultaneous measurement of flight time and energy of large MALDI ions with a superconducting tunnel junction detector. J Am Soc Mass Spectrom 8: 1094– 1102. Benner WH, Zhong F, Frank M, Labov SE. 1997b. Detecting MALDI ions with a cryogenic detector. 14th International Mass Spectrometry Conference. Finland Tampere. EJ Karjalainen et al., editor. Amsterdam: Elsevier Science Publishers B.V. 1998. (on CD ROM). Benoit A, Martin M, Pannetier B. 1993. Tunnel junction used as thermometer for ions detection. J Low Temp Physics 93: 727– 731. Berkenkamp S, Kirpekar F, Hillenkamp F. 1998. Infrared MALDI mass spectrometry of large nucleic acid. Science 281: 260– 262. Berkenkamp S, Menzel C, Karas M, Hillenkamp F. 1997. Performance of infrared matrix-assisted laser desorption/ ionization mass spectrometry with lasers emitting in the 3 μm wavelength range. Rapid Commun Mass Spectrom 11: 1399– 1406. Beuhler RJ, Friedman L. 1980. Threshold studies of secondary electron emission induced by macro-ion impact on solid surfaces. Nuclear Instruments and Methods 170: 309– 315. Bondarenko PV, Grant PG, Macfarlane RD. 1994. Pulse amplitude analysis: a new dimension in single ion time- of-flight mass spectrometry. Int J Mass Spectrom Ion Processes 131: 181– 192. Booth NE. 1987. Quasiparticle trapping and the quasiparticle multiplier. Applied Physics Letters 50: 293– 295. Booth NE. 1997. Calorimetric detectors for high mass ions. Rapid Commun Mass Spectrom 11: 944– 947. Booth NE, Cabrera B, Fiorini E. 1996. Low-temperature particle detectors. Annu Rev Nuclear and Particle Science 46: 471– 532. Booth NE, Goldie DJ. 1996. Superconducting particle detectors. Superconductor Science and Technology 9: 493– 516. Bruce JE, Anderson GA, Hofstadter SA, Vanorden SL. 1993. Selected-ion accumulation from and external electrospray ionization source with a Fourier-transform ion cyclotron resonance mass spectrometer. Rapid Commun Mass Spectrom 7: 914– 919. Brunelle A, Chaurand P, Della-Negra S, Beyec YL, Baptista GB. 1993. Surface secondary electron and secondary ion emission induces by large molecular ion impacts. Int J Mass Spectrom Ion Processes 126: 65– 73. Brunelle A, Chaurand P, Della-Negra S, Beyec YL, Parilis E. 1997. Secondary Electron Emission Yields from a CsI Surface Under Impacts of Large Molecules at Low Velocities (5 × 103–7 × 104 m/s). Rapid Commun in Mass Spectrom 11: 353– 362. Burlingame AL, Boyd RK, Gaskell SJ. 1998. Mass spectrometry. Anal Chem 70: R647– R716. Cabrera B, Brink PL, Clarke RM, Chugg B. 1996. Low temperature detectors for dark matter searches. Nuclear Physics B, Supplement 516: 294– 303. Cabrera B, Clarke RM, Colling P, Miller AJ, Nam S, Romani RW. 1998. Detection of single infrared, optical and ultraviolet photons using superconducting transition edge sensors. Applied Physics Letters 73: 735– 737. Cantini P, Cavallini M, Dondi MG, Scoles G. 1968. Absolute total collision cross sections for Maxwellian beams of H2 and He scattered by room temperature H2 and He. Physics Letters 27A: 284– 285. Caria M, Niinikoski TO, Rijllart A, Strehl B. 1990. A superconducting strip detector for fast pulse detection in high-energy physics. IEEE Transactions on Nuclear Science 37: 1127– 1131. Cavallini M, Gallinaro G, Scoles G. 1967. High sensitivity bolometer detector for molecular beams. Zeitschrift für Naturforschung 22A: 413– 414. Cavallini M, Gallinaro G, Scoles G. 1969. A Superconducting bolometer as a high sensitivity detector for molecular beams. Zeitschrift für Naturforschung 24A: 1850– 1851. Cavallini M, Meneghetti L, Scoles G, Yealland M. 1971. A molecular beam scattering apparatus with a low temperature bolometer detector. Rev Scientific Instruments 42: 1759– 1763. Chernushevich IV, Ens W, Standing KG. 1997. Electrospray ionization time-of-flight mass spectrometry. In: RB Cole, editor. Electrospray Ionization Mass Spectrometry. New York: John Wiley & Sons, p 203– 234. Chervenak JA, Irwin KD, Grossman NE, Martinis JM, Reintsema CD, Huber ME. 1999. Superconducting multiplexer for arrays of transition edge sensors. Applied Physics Letters 74: 4043– 4045. Dondi MG, Scoles G, Torello F, Pauly H. 1969. Energy dependence of the total elastic collision cross section of identical molecules: 4He. J Chemical Physics 51: 392– 397. Fenn JB, Mann M, Meng CK, Wong SF, Whitehouse CM. 1990. Electrospray ionization—Principles and practice. Mass Spectrom Rev 9: 37– 70. Ferger P, Colling P, Cooper S, Dummer D, Frank M, Nagel U, Nucciotii A, Probst F, Seidel W. 1994. A massive cryogenic particle detector with good energy resolution. Physics Letters B 323: 95– 98. Fiske MD. 1964. Temperature and magnetic field dependence of the Josephson tunneling current. Rev Modern Physics 36: 221– 222. Frank M. 1997. Industrial X-ray fluorescence analysis— new applications and challenges for cryogenic detectors. 7th Intl. Workshop on Low Temperature Detectors (LTD-7). Munich. S Cooper, editor. Max Planck Institute for Physics, p 78– 81. Frank M, Hiller LJ, Grand JBI, Mears CA, Labov SE, Lindeman MA, Netel H, Chow D, Barfknecht AT. 1998a. Energy resolution and high count rate performance of superconducting tunnel junction X-ray spectrometers. Rev of Scientific Instruments 69: 25– 31. Frank M, Labov SE, Benner WH, Zhong F. 1999. Measuring 750 kDa protein molecules and their fragmentation in a MALDI time-of-flight mass spectrometer using a cryogenic detector (in preparation). Frank M, Mears CA, Labov SE, Azgui F, Lindeman MA, Hiller LJ, Netel H, Barfknecht A. 1996a. High-resolution X-ray detectors with high-speed SQUID readout of superconducting tunnel junctions. Nuclear Instruments and Methods A 370 (Proceedings of LTD-6): 41– 43. Frank M, Mears CA, Labov SE, Benner WH, Horn D, Barfknecht AT. 1996b. High-efficiency detection of 66000 Da protein molecules using a cryogenic detector in a matrix-assisted-laser-desorption-ionization (MALDI) time-of-flight mass spectrometer. Rapid Commun Mass Spectrom 10: 1946– 1950. Frank M, Mears CA, Labov SE, Hiller LJ, Grand JBI, Lindeman MA, Netel H, Chow D, Barfknecht AT. 1998b. Cryogenic high-resolution X-ray spectrometers for SRXRF and microanalysis. J Synchrotron Radiation 5: 515– 517. Friedrich S, Mears CA, Nideröst B, Hiller LJ, Frank M, Labov SE, Barfknecht AT, Cramer SP. 1998. Superconducting tunnel junction array development for high-resolution energy-dispersive X-ray spectroscopy. 1998 Microscopy and Microanalysis Conference, Atlanta. Microscopy and Microanalysis 4 (1999): 616– 621. Friedrich S, Segall K, Gaidis MC, Wilson CM, Prober D, Szymkowiak AE, Moseley SH. 1997. Experimental quasiparticle dynamics in a superconducting, imaging X-ray spectrometer. Applied Physics Letters 71: 3901– 3903. Gabutti A, Gray KE, Pugh GM, Tiberio R. 1992. A fast, self- recovering superconducting strip particle detector made with granular tungsten. Nuclear Instruments and Methods A 312: 475– 482. Gaitskell RJ, Angrave LC, Booth NE, Hahn AD, Salmon GL, Swift AM. 1996. A measurement of the beta spectrum of 63Ni using a new type of cryogenic detector. Physics Letters B 370: 163– 166. Gallinaro G, Roba G, Tatarek R. 1978. Molecular beam detection by fast superconducting bolometers. J Physics E: Scientific Instruments 11: 628– 630. Gallinaro G, Varone R. 1975. Construction and calibration of a fast superconducting bolometer. Cryogenics (May 1975): 292– 293. Geno PW, Macfarlane RD. 1989. Secondary electron emission induced by impact of low-velocity molecular ions on a microchannel plate. Int J Mass Spectrom Ion Processes 92: 195– 210. Gerber D, Grosjean C, Twerenbold D, Vuilleumier J-L, Gillevet PM, Brandt Bvd. 1997. Cryogenic particle detectors in biopolymer mass spectrometers. 7th International Workshop on Low Temperature Detectors. Munich. S Cooper, editor. Max Planck Institute for Physics, p 73– 75. Goldie DJ, Swift AM, Booth NE, Salmon GL. 1994. Tunnel junction arrays on InSb: A high resolution cryogenic detector for X- and gamma-rays. Nuclear Instruments and Methods A 344: 592– 596. Hettl P, Angloher G, Bruckmayer M, Feilitzsch Fv, Jochum J, Kraus H, Mössbauer RL. 1997. Progress in fabrication and development of Ta–Al/AlxOy/Al superconducting tunnel junctions as position and energy sensitive X-ray detectors. 7th International Workshop on Low Temperature Detectors (LTD-7). Munich. S Cooper, editor. Max-Planck-Institute for Physics, p 20– 24. Hilton GC, Martinis JM, Wollman DA, Irwin KD, Dulcie LL, Gerber D, Gillevet PM, Twerenbold D. 1998. Impact energy measurement in time-of-flight mass spectrometry with cryogenic microcalorimeters. Nature 391: 672– 675. Irwin KD. 1995. An application of electrothermal feedback for high resolution cryogenic particle detection. Applied Physics Letters 66: 1998– 2000. Jaklevic JM, Benner WH, Katz JE. 1991. Advanced detectors for mass spectrometry, field task proposal. Lawrence Berkeley National Laboratory. Juhasz P, Vestal ML, Martin SA. 1997. On the initial velocity of ions generated by matrix-assisted laser desorption ionization and its effect on the calibration of delayed extraction time-of-flight mass spectra. J Am Soc Mass Spectrom 8: 209– 217. Karas M, Hillenkamp F. 1988. Laser desorption ionization of proteins and molecular masses exceeding 10000 Daltons. Anal Chem 188: 2299– 2301. Kaufmann R, Kirsch D, Rood H-A, Spengler B. 1992. Secondary-ion generation from large keV molecular primary ions incident on a stainless-steel dynode. Rapid Commun Mass Spectrom 6: 98– 104. Kienlin Av, Azgui F, Bohmer W, Djotni K, Egelhof P, Henning W, Kraus G, Meier J, Shepard KW. 1996. High resolution detection of energetic heavy ions with a calorimetric low temperature detector. Nuclear Instruments and Methods A 368: 815– 818. Kienlin Av, Böhmer W, Egelhof P, Henning W, Kraus G, Meier J, Azgui F, Djotni K. 1991. Response of bolometric cryodetectors to energetic heavy ions. 4th International Workshop on Low Temprature Detectors for Neutrinos and Dark Matter (LTD-4). Oxford, U.K. NE Booth, GL Salmon, editors. Editions Frontieres, Gif-sur-Yvette (1992). p 377– 385. Kraus H, Feilitzsch Fv, Jochum J, Mössbauer RL, Peterreins T, Probst F. 1989. Quasiparticle trapping in a superconductive detector system exhibiting high energy and position resolution. Physics Letters B 231: 195– 202. Krutchinsky AN, Loboda AV, Spicer VL, Dworschak R, Ens W, Standing KG. 1998. Orthogonal injection of MALDI ions into a time-of-flight spectrometer through a collisional damping interface. Rapid Commun Mass Spectrom 12: 508– 518. Kurakado M. 1982. Possibility of high resolution detectors using superconducting tunnel junctions. Nuclear Instruments and Methods 196: 275– 277. Kurakado M, Matsumura A, Takahashi T, Ito S, Katano R, Isozumi Y. 1991. Superconductive radiation detector with large sensitive area (series-connected STJ detector). Rev Scientific Instruments 62: 156– 162. Kurakado M, Ohsawa D, Katano R, Ito S, Isozumi Y. 1997. Further developments of series-connected superconducting tunnel junctions to radiation detection. Rev Scientific Instruments 68: 3685– 3697. Labov SE, Frank M, le Grand JB, Lindeman MA, Netel H, Hiller LJ, Chow D, Friedrich S, Mears CA, Caldara G, Barfknecht AT. 1997. Cryogenic detector development at LLNL: Ultraviolet, X-ray, gamma-ray and biomolecule spectroscopy. 7th International Workshop on Low Temperature Detectors. Munich. S Cooper, editor. Max Planck Institute for Physics. p 82– 95. Ladbury R. 1998. Microcalorimeters may provide a solution to the big problem of small contaminants. Physics Today July 1998: 19– 21. Leo WR. 1994. Techniques for nuclear and particle physics experiments: a how-to approach. Springer: Berlin, New York. LTD-6 1995. Proceedings of the 6th International Workshop on Low Temperature Detectors. Beatenberg, Switzerland. Ott HR, Zehnder A, editors. Nuclear Instruments and Methods A 370. 1– 300. LTD-7 1997. Proceedings of the 7th International Workshop on Low Temperature Detectors. Munich. Cooper S, editor. ISBN 3-00-002266-X Max Planck Institute for Physics, p 1– 262. Marenco G, Schutte A, Scoles G, Tommasini F. 1972. Interaction of atomic and molecular hydrogen beams with surfaces at very low temperature. J Vacuum Science and Technol 9: 824– 827. McCammon D, Cui W, Juda M, Morgenthaler J, Zhang J. 1993. Thermal calorimeters for high resolution X-ray spectroscopy. Nuclear Instruments and Methods A 326: 157– 165. Mears CA, Labov SE, Barfknecht AT. 1993. Energy-resolving superconducting X-ray detectors with charge amplification and multiple quasiparticle tunneling. Applied Physics Letters 63: 2961– 2963. Mears CA, Labov SE, Frank M, Netel H, Hiller LJ, Lindeman MA, Chow D, Barfknecht AT. 1997. High-resolution X-ray spectrometers with an active area of 282 μm × 282 μm. IEEE Transactions on Applied Superconductivity 7 (Proceedings of ASC-96): 3415– 3419. Meier J, Egelhof P, Fischer C, Himmler A, Kirchner G, Kienlin Av, Kraus G, Henning W, Shepard KW. 1993. Energy sensitive detection of heavy ions with transition edge calorimeters. J Low Temperature Physics 93 (Proceedings of LTD-5): 231– 238. Meier J, Egelhof P, Henning W, Kienlin Av, Kraus G, Weinbach A. 1997. Low temperature bolometers for experiments with cooled heavy ion beams from storage rings. Nuclear Physics A 626: 45lc– 456c. Nahum M, Martinis JM, Castles S. 1993. Hot-electron microcalorimeters for X-ray and phonon detection. J Low Temperature Physics 93 (Proceedings of LTD- 5): 733– 738. Nahum M, Richards PL, Mears CA. 1993. Design analysis of a novel hot-electron microbolometer. IEEE Transactions on Applied Superconductivity 3: 2124– 2127. Nelson RW, Dogruel D, Williams P. 1995. Mass determination of human immunoglobulin IgM using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Rapid Commun Mass Spectrom 8: 621– 631. Nguyen V-T, Wien K, Baranov IV, Novikov AC, Obnorskii VV. 1996. Detection of large cluster ions by ion-to-ion conversion. Rapid Commun Mass Spectrom 10: 1463– 1470. Peacock A, Verhoeve P, Rando N, Dordrecht Av, Taylor BG, Erd C, Perryman MAC, Venn R, Howlett J, Goldie DJ, Lumley J, Wallis M. 1996. Single optical photon detection with a superconducting tunnel junction. Nature 381: 135– 137. Richards PL. 1994. Bolometers for infrared and millimeter waves. J Appl Phys 76: 1– 24. Sanna G, Nardi M, Tomassetti G. 1990. Apparatus for the study of the IR multiple-photon resonances of polyatomic molecules via the optothermal technique. 1. Description of the Apparatus. Rev Scientific Instruments 61: 1371– 1378. Schilling G. 1996. All-in-one detectors for the faintest objects. Science 274: 36– 38. Schriemer DC, Li L. 1996. Detection of high molecular wight narrow polydisperse polymers up to 1.5 million Daltons by MALDI mass spectrometry. Anal Chem 68: 2721– 2725. Schutte A, Bassi D, Tommasini F, Turelli A, Scoles G, Hermans LJF. 1976. Recombination of atomic hydrogen on low temperature surfaces. J Chem Physics 64: 4134– 4142. Senko MW, McLafferty FW. 1994. Mass-spectrometry of macromolecules: Has its time now come. Annu Rev Biophy Biomolecular Structure 23: 763– 785. Silver E, Legros M, Madden N, Beeman J, Haller E. 1996. High-resolution, broad-band microcalorimeters for X-ray microanalysis. X-ray Spectrom 25: 115– 122. Siuzdak G. 1994. The emergence of mass spectrometry in biochemical research. Proceedings of the National Academy of Sciences of the United States of America 91: 11290– 11297. Speir JP, Senko MW, Little DP, Loo JA. 1995. High-resolution tandem mass spectra of 37–67 kDa roteins. J Mass Spectrom 30: 39– 42. Spengler B, Kirsch D, Kaufmann R, Karas M, Hillenkamp F, Giessmann U. 1990. The detection of large molecules in matrix-assisted UV-laser desorption. Rapid Commun Mass Spectrom 4: 301– 305. Twerenbold D. 1986. Nonequilibrium model of the superconducting tunneling junction X-ray detector. Physical Rev B 34: 7748– 7759. Twerenbold D. 1996a. Biopolymer mass spectrometer with cryogenic particle detectors. Nuclear Instruments and Methods A 370: 253– 255. Twerenbold D. 1996b. Review of cryogenic detectors. Reports on Progress in Particle Physics 59: 349– 426. Twerenbold D. 1997. Mass spectrometer for macromolecules with cryogenic particle detectors. US patent no. 5640010. Twerenbold D, Gillevet PM, Gerber D, Gervasio G, Vuilleumier J-L, Brandt Bvd. 1997. Single molecule detection of 120-mer DNA-oligonucleotides and 130kDa IgG proteins with cryogenic particle detectors (preprint). 9th International Genome Sequencing and Analysis Conference. Hilton Head. Twerenbold D, Vuilleumier J-L, Gerber D, Tadsen A, Brandt Bvd, Gillevet PM. 1996. Detection of single macromolecules using a cryogenic particle detector coupled to a bioploymer mass spectrometer. Applied Physics Letters 68: 3503– 3505. Verentchikov A, Ens W, Matens J, Standing KG. 1993. Detection of large molecular ions by secondary ion and secondary electron emission. In J Mass Spectrom Ion Processes 126: 75– 83. Verentchikov AN, Ens W, Standing KG. 1994. Reflecting time-of-flight mass spectrometer with an electrospray ion source and orthogonal extraction. Anal Chem 66: 126– 33. Voronov BM, Gershenzon EM, Goltzman GN, Gogidze IG. 1992. Superconducting NbN film picosecond-range detector sensitive to radiation in the spectral interval ranging from millimeter wavelengths to visible light. Superconductivity: Physics, Chemistry, Technology 5: 960– 965. Westmacott G, Ens W, Standing KG. 1996. Secondary ion and electron yield measurements for surfaces bombarded with large molecular ions. Nuclear Instruments and Methods B 108: 282– 289. Wollman DA, Irwin KD, Hilton GC, Dulcie LL, Newbury DE, Martinis JM. 1997. High-resolution, energy-dispersive microcalorimeter spectrometer for X-ray microanalysis. J Microscopy 188: 196– 223. Xu Y, Bae YK, Beuhler RJ, Friedman L. 1993. Secondary electron analysis of polymeric ions generated by an electrospray ion source. J Physical Chemistry 97: 11883– 11886. Zehnder A, Hagen CW, Rothmund W. 1990. Superconducting tunnel junction detectors. Proceedings of the SPIE 1344: 286– 294. Citing Literature Supporting Information This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract no. W-7405-ENG-48 and supported by the Director Office of Energy Research, Office of Health and Environmental Research, Human Genome Project, U.S. Department of Energy under contract no. DE-AC03-76SF00098. Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article. Volume18, Issue3-41999Pages 155-186 ReferencesRelatedInformation

Referência(s)