Artigo Revisado por pares

Microcooling Channel Effect on a Monopropellant Microelectromechanical System Thruster Performance

2017; American Institute of Aeronautics and Astronautics; Volume: 33; Issue: 6 Linguagem: Inglês

10.2514/1.b36393

ISSN

1533-3876

Autores

Jeongmoo Huh, Sejin Kwon,

Tópico(s)

Spacecraft and Cryogenic Technologies

Resumo

No AccessTechnical NoteMicrocooling Channel Effect on a Monopropellant Microelectromechanical System Thruster PerformanceJeongmoo Huh and Sejin KwonJeongmoo HuhKorea Advanced Institute of Science and Technology, Daejeon 305-701, Republic of Korea and Sejin KwonKorea Advanced Institute of Science and Technology, Daejeon 305-701, Republic of KoreaPublished Online:30 May 2017https://doi.org/10.2514/1.B36393SectionsRead Now ToolsAdd to favoritesDownload citationTrack citations ShareShare onFacebookTwitterLinked InRedditEmail About References [1] Leomanni M., Garulli A., Giannitrapani A. and Scortecci F., "Propulsion Options for Very Low Earth Orbit Microsatellites," Acta Astronautica, Vol. 133, No. 3, April 2017, pp. 444–454. doi:https://doi.org/10.1016/j.actaastro.2016.11.001 AASTCF 0094-5765 CrossrefGoogle Scholar[2] Haag G. S., Sweeting M. N. and Richardson G., "Low Cost Propulsion Development for Small Satellites at the Surrey Space Centre," 13th Annual AIAA/USU Conference on Small Satellites, Paper SSC99XII-2, Utah State Univ., Logan, UT, 1999. Google Scholar[3] Sutton G. P. and Biblarz O., Rocket Propulsion Elements, 8th ed., Wiley, Hoboken, NJ, 2010, p. 663. Google Scholar[4] Genovese A., Tajmar M., Buldrini N. and Steiger W., "2000-Hour Endurance Test of Indium Field Emission Electric Propulsion Microthruster Cluster," Journal of Propulsion and Power, Vol. 20, No. 2, 2004, pp. 219–227. doi:https://doi.org/10.2514/1.9250 JPPOEL 0748-4658 LinkGoogle Scholar[5] Tajmar M. and Scharlemann C. A., "Development of Electric and Chemical Microthrusters," International Journal of Aerospace Engineering, Vol. 2011, March 2011, Paper 361215. doi:https://doi.org/10.1155/2011/361215 CrossrefGoogle Scholar[6] Charles C., Boswell R. W., Bish A., Khayms V. and Scholz E. F., "Direct Measurement of Axial Momentum Imparted by an Electrothermal Radiofrequency Plasma Micro-Thruster," Frontiers in Physics, Vol. 4, 2016, Paper 19. doi:https://doi.org/10.3389/fphy.2016.00019 FRPHAY 0429-7725 CrossrefGoogle Scholar[7] Kohler J., Bejhed J., Kratz H., Bruhn F., Lindberg U., Hjort K. and Stenmark L., "A Hybrid Cold Gas Microthruster System for Spacecraft," Sensors and Actuators A: Physical, Vols. 97–98, April 2002, pp. 587–598. doi:https://doi.org/10.1016/S0924-4247(01)00805-6 CrossrefGoogle Scholar[8] Bayt R. L., Analysis, Fabrication and Testing of a MEMS-Based Micropropulsion System, Massachusetts Inst. of Technology, Cambridge, MA, 1999, pp. 1–187. Google Scholar[9] Huh J. and Kwon S., "Design, Fabrication and Thrust Measurement of a Micro Liquid Monopropellant Thruster," Journal of Micromechanics and Microengineering, Vol. 24, No. 10, 2014, Paper 104001. doi:https://doi.org/10.1088/0960-1317/24/10/104001 JMMIEZ 0960-1317 CrossrefGoogle Scholar[10] Lee J., Kim S., Kwon S. and Yu M., "Fabrication of Catalyst-Insertion-Type Microelectromechanical Systems Monopropellant Thruster," Journal of Propulsion and Power, Vol. 28, No. 2, 2012, pp. 396–404. doi:https://doi.org/10.2514/1.B34287 JPPOEL 0748-4658 LinkGoogle Scholar[11] Kundu P., Sinha A. K., Bhattacharyya T. K. and Das S., "MnO2 Nanowire Embedded Hydrogen Peroxide Monopropellant MEMS Thruster," Journal of Microelectromechanical Systems, Vol. 22, No. 2, 2013, pp. 406–417. doi:https://doi.org/10.1109/JMEMS.2012.2226929 JMIYET 1057-7157 CrossrefGoogle Scholar[12] Wu M. H. and Lin P. S., "Design, Fabrication and Characterization of a low-Temperature Co-Fired Ceramic Gaseous Bi-Propellant Microthruster," Journal of Micromechanics and Microengineering, Vol. 20, No. 8, 2010, Paper 085026. doi:https://doi.org/10.1088/0960-1317/20/8/085026 JMMIEZ 0960-1317 CrossrefGoogle Scholar[13] London A. P., Ayon A. A., Epstein A. H., Spearing S. M., Harrison T., Peles Y. and Kerrebrock J. L., "Microfabrication of a High Pressure Bipropellant Rocket Engine," Sensors and Actuators A: Physical, Vol. 92, Nos. 1–3, 2001, pp. 351–357. doi:https://doi.org/10.1016/S0924-4247(01)00571-4 CrossrefGoogle Scholar[14] Oh H.-U., Kim T.-G., Han S.-H. and Lee J., "Verification of MEMS Fabrication Process for the Application of MEMS Solid Propellant Thruster Arrays in Space Through Launch and On-Orbit Environment Tests," Acta Astronautica, Vol. 131, Feb. 2017, pp. 28–35. doi:https://doi.org/10.1016/j.actaastro.2016.11.013 AASTCF 0094-5765 CrossrefGoogle Scholar[15] Liu X., Li T., Li Z., Ma H. and Fang S., "Design, Fabrication and Test of a Solid Propellant Microthruster Array by Conventional Precision Machining," Sensors and Actuators A: Physical, Vol. 236, Dec. 2015, pp. 214–227. doi:https://doi.org/10.1016/j.sna.2015.10.023 CrossrefGoogle Scholar[16] Kuan C. K., Chen G. B. and Chao Y. C., "Development and Ground Tests of a 100-Millinewton Hydrogen Peroxide Monopropellant Microthruster," Journal of Propulsion and Power, Vol. 23, No. 6, 2007, pp. 1313–1320. doi:https://doi.org/10.2514/1.30440 JPPOEL 0748-4658 LinkGoogle Scholar[17] Cheah K. H. and Low K. S., "Fabrication and Performance Evaluation of a High Temperature Co-Fired Ceramic Vaporizing Liquid Microthruster," Journal of Micromechanics and Microengineering, Vol. 25, No. 1, 2015, Paper 015013. https://doi.org/10.1088/0960-1317/25/1/015013 JMMIEZ 0960-1317 CrossrefGoogle Scholar[18] Wu M. H. and Yetter R. A., "A Novel Electrolytic Ignition Monopropellant Microthruster Based On Low Temperature Co-Fired Ceramic Tape Technology," Lab on a Chip, Vol. 9, No. 7, 2009, pp. 910–916. doi:https://doi.org/10.1039/B812737A LCAHAM 1473-0197 CrossrefGoogle Scholar[19] Lee J. and Kwon S., "Evaluation of Ethanol-Blended Hydrogen Peroxide Monopropellant on a 10 N Class Thruster," Journal of Propulsion and Power, Vol. 29, No. 5, 2013, pp. 1164–1170. doi:https://doi.org/10.2514/1.B34790 JPPOEL 0748-4658 LinkGoogle Scholar[20] Janson S. W., Helvajian H., Hansen W. W. and Lodmell L. J., "Microthrusters for Nanosatellites," 2nd International Conference on Integrated Micro Nanotechnology for Space Applications (MNT99), Aerospace Corp., Pasadena, CA, April 1999. Google Scholar[21] Huzel D. K. and Huang D. H., Modern Engineering for Design of Liquid-Propellant Rocket Engines, AIAA, Washington, D.C., 1992, p. 105. Google Scholar[22] An S. and Kwon S., "Scaling and Evaluation of Pt/Al2O3 Catalytic Reactor for Hydrogen Peroxide Monopropellant Thruster," Journal of Propulsion and Power, Vol. 25, No. 5, 2009, pp. 1041–1045. doi:https://doi.org/10.2514/1.40822 JPPOEL 0748-4658 LinkGoogle Scholar[23] Louisos W. F., Alexeenko A. A., Hitt D. L. and Zilic A., "Design Considerations for Supersonic Micronozzles," International Journal of Manufacturing Research, Vol. 3, No. 1, 2008, pp. 80–113. doi:https://doi.org/10.1504/IJMR.2008.016453 CrossrefGoogle Scholar[24] Wadel M. F., "Comparison of High Aspect Ratio Cooling Channel Designs for a Rocket Combustion Chamber with Development of an Optimized Design," NASA Lewis Research Center TM-1998-206313, 1998. Google Scholar[25] Cengel Y. A. and Ghajar A. J., Heat and Mass Transfer: Fundamentals and Applications, 4th ed., McGraw–Hill, New York, 2011, p. 437. Google Scholar Previous article Next article FiguresReferencesRelatedDetailsCited byRoom-temperature catalytically reactive ammonium dinitramide–H2O2 monopropellant for microsatellitesAdvances in Space Research, Vol. 69, No. 3Methodology for Geometric Optimization and Sizing for Subnewton Monopropellant Catalyst BedsEwan Fonda-Marsland, Graham T. Roberts, Charles N. Ryan and David Gibbon28 June 2021 | Journal of Propulsion and Power, Vol. 37, No. 5Development of a Low-Cost 0.1N High Test Peroxide Thruster Using Additive ManufacturingEwan Fonda-Marsland, Graham Roberts, Dave Gibbon and Charlie Ryan16 August 2019Preliminary Assessment of Hydrogen Peroxide Gel as an Oxidizer in a Catalyst Ignited Hybrid ThrusterInternational Journal of Aerospace Engineering, Vol. 2018High performance microthruster with ammonium-dinitramide-based monopropellantSensors and Actuators A: Physical, Vol. 283 What's Popular Volume 33, Number 6November 2017 CrossmarkInformationCopyright © 2017 by the American Institute of Aeronautics and Astronautics, Inc. All rights reserved. All requests for copying and permission to reprint should be submitted to CCC at www.copyright.com; employ the ISSN 0748-4658 (print) or 1533-3876 (online) to initiate your request. See also AIAA Rights and Permissions www.aiaa.org/randp. TopicsAircraft EnginesCatalysisChemical KineticsCombustion ChambersElectric PropulsionIon ThrusterMonopropellantsNozzlesPropellantPropulsion and PowerRocket EngineRocket PropellantRocketrySpacecraft PropulsionThermochemistry and Chemical KineticsThermophysics and Heat Transfer KeywordsHall Effect ThrusterMonopropellantsMicroelectromechanical SystemsSolid PropellantsCatalystsSmall SatellitesMicropropulsion SystemsChamber PressureElectrical EnergyHigh Aspect RatioAcknowledgmentsThis work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korean government (MSIP) (no. NRF-2015R1A2A1A15055373).PDF Received12 July 2016Accepted13 March 2017Published online30 May 2017

Referência(s)
Altmetric
PlumX