
Formulação multi-escala para a análise de flexão de placas considerando processos dissipativos na microestrutura e acoplamento MEC/MEF
2017; UNIVERSIDADE FEDERAL DO RIO DE JANEIRO; Volume: 22; Issue: 2 Linguagem: Português
10.1590/s1517-707620170002.0153
ISSN1517-7076
AutoresNilson Sérgio de Souza Júnior, Gabriela Rezende Fernandes, José Júlio de Cerqueira Pituba,
Tópico(s)Composite Structure Analysis and Optimization
ResumoRESUMO Neste trabalho apresentam-se análises de flexão de placas compostas por materiais heterogêneos através de uma abordagem multi-escala. O macro-contínuo, representado neste trabalho pela placa, é modelado por uma formulação não-linear do Método dos Elementos de Contorno (MEC), que leva em conta o operador tangente consistente (CTO). A micro-escala é representada pelo EVR (Elemento de Volume Representativo), sendo seu problema de equilíbrio definido em termos de flutuação dos deslocamentos e solucionado através do Método dos Elementos Finitos (MEF), onde a hipótese de média volumétrica das tensões e deformações é adotada para se fazer a passagem do micro-contínuo para o macro-contínuo. A cada ponto do macro-contínuo, onde se necessita conhecer as tensões e o tensor constitutivo deve estar associado um EVR, onde se podem definir inclusões e/ou vazios no interior de uma matriz a fim de representar a micro-estrutura de um material heterogêneo. Nos exemplos numéricos são considerados diferentes EVRs com inclusões elásticas dentro de uma matriz, onde os modelos de Von Mises ou Mohr Coulomb são adotados, a fim de governar o comportamento do seu material. Consideram-se diferentes frações volumétricas para as inclusões a fim de verificar a influência na resposta homogeneizada da microestrutura e, consequentemente, no comportamento mecânico do macro-contínuo. Para solucionar o problema de equilíbrio do EVR devem-se adotar condições de contorno em termos de flutuações dos deslocamentos, que nos exemplos analisados no presente trabalho serão consideradas como periódicas.
Referência(s)