Revisão Acesso aberto Revisado por pares

The P2X7 Receptor in Infection and Inflammation

2017; Cell Press; Volume: 47; Issue: 1 Linguagem: Inglês

10.1016/j.immuni.2017.06.020

ISSN

1097-4180

Autores

Francesco Di Virgilio, Diego Dal Ben, Alba Clara Sarti, Anna Lisa Giuliani, Simonetta Falzoni,

Tópico(s)

Adolescent and Pediatric Healthcare

Resumo

Adenosine triphosphate (ATP) accumulates at sites of tissue injury and inflammation. Effects of extracellular ATP are mediated by plasma membrane receptors named P2 receptors (P2Rs). The P2R most involved in inflammation and immunity is the P2X7 receptor (P2X7R), expressed by virtually all cells of innate and adaptive immunity. P2X7R mediates NLRP3 inflammasome activation, cytokine and chemokine release, T lymphocyte survival and differentiation, transcription factor activation, and cell death. Ten human P2RX7 gene splice variants and several SNPs that produce complex haplotypes are known. The P2X7R is a potent stimulant of inflammation and immunity and a promoter of cancer cell growth. This makes P2X7R an appealing target for anti-inflammatory and anti-cancer therapy. However, an in-depth knowledge of its structure and of the associated signal transduction mechanisms is needed for an effective therapeutic development. Adenosine triphosphate (ATP) accumulates at sites of tissue injury and inflammation. Effects of extracellular ATP are mediated by plasma membrane receptors named P2 receptors (P2Rs). The P2R most involved in inflammation and immunity is the P2X7 receptor (P2X7R), expressed by virtually all cells of innate and adaptive immunity. P2X7R mediates NLRP3 inflammasome activation, cytokine and chemokine release, T lymphocyte survival and differentiation, transcription factor activation, and cell death. Ten human P2RX7 gene splice variants and several SNPs that produce complex haplotypes are known. The P2X7R is a potent stimulant of inflammation and immunity and a promoter of cancer cell growth. This makes P2X7R an appealing target for anti-inflammatory and anti-cancer therapy. However, an in-depth knowledge of its structure and of the associated signal transduction mechanisms is needed for an effective therapeutic development.

Referência(s)