Artigo Acesso aberto Revisado por pares

Transparent, Flexible, and Conductive 2D Titanium Carbide (MXene) Films with High Volumetric Capacitance

2017; Volume: 29; Issue: 36 Linguagem: Inglês

10.1002/adma.201702678

ISSN

1521-4095

Autores

Chuanfang Zhang, Babak Anasori, Andrés Seral‐Ascaso, Sang‐Hoon Park, Niall McEvoy, Aleksey Shmeliov, Georg S. Duesberg, Jonathan N. Coleman, Yury Gogotsi, Valeria Nicolosi,

Tópico(s)

Supercapacitor Materials and Fabrication

Resumo

2D transition-metal carbides and nitrides, known as MXenes, have displayed promising properties in numerous applications, such as energy storage, electromagnetic interference shielding, and catalysis. Titanium carbide MXene (Ti3 C2 Tx ), in particular, has shown significant energy-storage capability. However, previously, only micrometer-thick, nontransparent films were studied. Here, highly transparent and conductive Ti3 C2 Tx films and their application as transparent, solid-state supercapacitors are reported. Transparent films are fabricated via spin-casting of Ti3 C2 Tx nanosheet colloidal solutions, followed by vacuum annealing at 200 °C. Films with transmittance of 93% (≈4 nm) and 29% (≈88 nm) demonstrate DC conductivity of ≈5736 and ≈9880 S cm-1 , respectively. Such highly transparent, conductive Ti3 C2 Tx films display impressive volumetric capacitance (676 F cm-3 ) combined with fast response. Transparent solid-state, asymmetric supercapacitors (72% transmittance) based on Ti3 C2 Tx and single-walled carbon nanotube (SWCNT) films are also fabricated. These electrodes exhibit high capacitance (1.6 mF cm-2 ) and energy density (0.05 µW h cm-2 ), and long lifetime (no capacitance decay over 20 000 cycles), exceeding that of graphene or SWCNT-based transparent supercapacitor devices. Collectively, the Ti3 C2 Tx films are among the state-of-the-art for future transparent, conductive, capacitive electrodes, and translate into technologically viable devices for next-generation wearable, portable electronics.

Referência(s)