Artigo Revisado por pares

Efficient algorithms based on the k-means and Chaotic League Championship Algorithm for numeric, categorical, and mixed-type data clustering

2017; Elsevier BV; Volume: 90; Linguagem: Inglês

10.1016/j.eswa.2017.08.004

ISSN

1873-6793

Autores

Tanachapong Wangchamhan, Sirapat Chiewchanwattana, Khamron Sunat,

Tópico(s)

Data Management and Algorithms

Resumo

The success rates of the expert or intelligent systems depend on the selection of the correct data clusters. The k-means algorithm is a well-known method in solving data clustering problems. It suffers not only from a high dependency on the algorithm's initial solution but also from the used distance function. A number of algorithms have been proposed to address the centroid initialization problem, but the produced solution does not produce optimum clusters. This paper proposes three algorithms (i) the search algorithm C-LCA that is an improved League Championship Algorithm (LCA), (ii) a search clustering using C-LCA (SC-LCA), and (iii) a hybrid-clustering algorithm called the hybrid of k-means and Chaotic League Championship Algorithm (KSC-LCA) and this algorithm has of two computation stages. The C-LCA employs chaotic adaptation for the retreat and approach parameters, rather than constants, which can enhance the search capability. Furthermore, to overcome the limitation of the original k-means algorithm using the Euclidean distance that cannot handle the categorical attribute type properly, we adopt the Gower distance and the mechanism for handling a discrete value requirement of the categorical value attribute. The proposed algorithms can handle not only the pure numeric data but also the mixed-type data and can find the best centroids containing categorical values. Experiments were conducted on 14 datasets from the UCI repository. The SC-LCA and KSC-LCA competed with 16 established algorithms including the k-means, k-means++, global k-means algorithms, four search clustering algorithms and nine hybrids of k-means algorithm with several state-of-the-art evolutionary algorithms. The experimental results show that the SC-LCA produces the cluster with the highest F-Measure on the pure categorical dataset and the KSC-LCA produces the cluster with the highest F-Measure for the pure numeric and mixed-type tested datasets. Out of 14 datasets, there were 13 centroids produced by the SC-LCA that had better F-Measures than that of the k-means algorithm. On the Tic-Tac-Toe dataset containing only categorical attributes, the SC-LCA can achieve an F-Measure of 66.61 that is 21.74 points over that of the k-means algorithm (44.87). The KSC-LCA produced better centroids than k-means algorithm in all 14 datasets; the maximum F-Measure improvement was 11.59 points. However, in terms of the computational time, the SC-LCA and KSC-LCA took more NFEs than the k-means and its variants but the KSC-LCA ranks first and SC-LCA ranks fourth among the hybrid clustering and the search clustering algorithms that we tested. Therefore, the SC-LCA and KSC-LCA are general and effective clustering algorithms that could be used when an expert or intelligent system requires an accurate high-speed cluster selection.

Referência(s)
Altmetric
PlumX