Identification of the SOX2 Interactome by BioID Reveals EP300 as a Mediator of SOX2-dependent Squamous Differentiation and Lung Squamous Cell Carcinoma Growth
2017; Elsevier BV; Volume: 16; Issue: 10 Linguagem: Inglês
10.1074/mcp.m116.064451
ISSN1535-9484
AutoresBo Ram Kim, Étienne Coyaud, Estelle Laurent, Jonathan St‐Germain, Emily Van de Laar, Ming‐Sound Tsao, Brian Raught, Nadeem Moghal,
Tópico(s)Peptidase Inhibition and Analysis
ResumoLung cancer is the leading cause of cancer mortality worldwide, with squamous cell carcinoma (SQCC) being the second most common form. SQCCs are thought to originate in bronchial basal cells through an injury response to smoking, which results in this stem cell population committing to hyperplastic squamous rather than mucinous and ciliated fates. Copy number gains in SOX2 in the region of 3q26–28 occur in 94% of SQCCs, and appear to act both early and late in disease progression by stabilizing the initial squamous injury response in stem cells and promoting growth of invasive carcinoma. Thus, anti-SOX2 targeting strategies could help treat early and/or advanced disease. Because SOX2 itself is not readily druggable, we sought to characterize SOX2 binding partners, with the hope of identifying new strategies to indirectly interfere with SOX2 activity. We now report the first use of proximity-dependent biotin labeling (BioID) to characterize the SOX2 interactome in vivo. We identified 82 high confidence SOX2-interacting partners. An interaction with the coactivator EP300 was subsequently validated in both basal cells and SQCCs, and we demonstrate that EP300 is necessary for SOX2 activity in basal cells, including for induction of the squamous fate. We also report that EP300 copy number gains are common in SQCCs and that growth of lung cancer cell lines with 3q gains, including SQCC cells, is dependent on EP300. Finally, we show that EP300 inhibitors can be combined with other targeted therapeutics to achieve more effective growth suppression. Our work supports the use of BioID to identify interacting protein partners of nondruggable oncoproteins such as SOX2, as an effective strategy to discover biologically relevant, druggable targets. Lung cancer is the leading cause of cancer mortality worldwide, with squamous cell carcinoma (SQCC) being the second most common form. SQCCs are thought to originate in bronchial basal cells through an injury response to smoking, which results in this stem cell population committing to hyperplastic squamous rather than mucinous and ciliated fates. Copy number gains in SOX2 in the region of 3q26–28 occur in 94% of SQCCs, and appear to act both early and late in disease progression by stabilizing the initial squamous injury response in stem cells and promoting growth of invasive carcinoma. Thus, anti-SOX2 targeting strategies could help treat early and/or advanced disease. Because SOX2 itself is not readily druggable, we sought to characterize SOX2 binding partners, with the hope of identifying new strategies to indirectly interfere with SOX2 activity. We now report the first use of proximity-dependent biotin labeling (BioID) to characterize the SOX2 interactome in vivo. We identified 82 high confidence SOX2-interacting partners. An interaction with the coactivator EP300 was subsequently validated in both basal cells and SQCCs, and we demonstrate that EP300 is necessary for SOX2 activity in basal cells, including for induction of the squamous fate. We also report that EP300 copy number gains are common in SQCCs and that growth of lung cancer cell lines with 3q gains, including SQCC cells, is dependent on EP300. Finally, we show that EP300 inhibitors can be combined with other targeted therapeutics to achieve more effective growth suppression. Our work supports the use of BioID to identify interacting protein partners of nondruggable oncoproteins such as SOX2, as an effective strategy to discover biologically relevant, druggable targets. Lung cancer is the leading cause of cancer mortality worldwide (1.Torre L.A. Bray F. Siegel R.L. Ferlay J. Lortet-Tieulent J. Jemal A. Global cancer statistics, 2012.CA. Cancer J. Clin. 2015; 65: 87-108Crossref PubMed Scopus (20110) Google Scholar). Squamous cell carcinoma (SQCC) 1The abbreviations used are: SQCC, squamous cell carcinoma; ADC, adenocarcinoma; AP-MS, affinity purification-mass spectrometry; SAINT, significance analysis of the interactome; FDR, false discovery rate; TCGA, The Cancer Genome Atlas; PI3K, phosphatidylinositol-4,5-bisphosphate 3-kinase; PDX, primary patient-derived tumor xenograft; PLA, proximity ligation assay; AML, acute myeloid leukemia; HAT, histone acetyltransferase; CCLE, Cancer Cell Line Encyclopedia; ATCC, American Type Culture Collection; ES, embryonic stem. 1The abbreviations used are: SQCC, squamous cell carcinoma; ADC, adenocarcinoma; AP-MS, affinity purification-mass spectrometry; SAINT, significance analysis of the interactome; FDR, false discovery rate; TCGA, The Cancer Genome Atlas; PI3K, phosphatidylinositol-4,5-bisphosphate 3-kinase; PDX, primary patient-derived tumor xenograft; PLA, proximity ligation assay; AML, acute myeloid leukemia; HAT, histone acetyltransferase; CCLE, Cancer Cell Line Encyclopedia; ATCC, American Type Culture Collection; ES, embryonic stem. is the second most common form of lung cancer and generally develops over many years through successive premalignant changes in the bronchial epithelium (2.Ishizumi T. McWilliams A. MacAulay C. Gazdar A. Lam S. Natural history of bronchial preinvasive lesions.Cancer Metastasis Rev. 2010; 29: 5-14Crossref PubMed Scopus (64) Google Scholar, 3.Meza R. Meernik C. Jeon J. Cote M.L. Lung cancer incidence trends by gender, race and histology in the United States, 1973–2010.PLoS ONE. 2015; 10: e0121323Crossref PubMed Scopus (145) Google Scholar). SQCCs have few effective treatment options with median survival times usually between 9–11 months (4.Langer C.J. Obasaju C. Bunn P. Bonomi P. Gandara D. Hirsch F.R. Kim E.S. Natale R.B. Novello S. Paz-Ares L. Perol M. Reck M. Ramalingam S.S. Reynolds C.H. Socinski M.A. Spigel D.R. Wakelee H. Mayo C. Thatcher N. Incremental innovation and progress in advanced squamous cell lung cancer: current status and future impact of treatment.J. Thoracic Oncol. 2016; 11: 2066-2081Abstract Full Text Full Text PDF PubMed Google Scholar). The poor survival rate is due in part to few targeted therapies and a limited understanding of SQCC pathogenesis. Mounting evidence suggests that SQCC is a stem cell disease. Most SQCCs express TP63 (5.Au N.H. Gown A.M. Cheang M. Huntsman D. Yorida E. Elliott W.M. Flint J. English J. Gilks C.B. Grimes H.L. P63 expression in lung carcinoma: a tissue microarray study of 408 cases.Appl. Immunohistochem. Mol. Morphol. 2004; 12: 240-247Crossref PubMed Google Scholar, 6.Ocque R. Tochigi N. Ohori N.P. Dacic S. Usefulness of immunohistochemical and histochemical studies in the classification of lung adenocarcinoma and squamous cell carcinoma in cytologic specimens.Am. J. Clin. Pathol. 2011; 136: 81-87Crossref PubMed Scopus (53) Google Scholar), a hallmark of basal cells, stem cells of the tracheal and bronchial airways (7.Engelhardt J.F. Schlossberg H. Yankaskas J.R. Dudus L. Progenitor cells of the adult human airway involved in submucosal gland development.Development. 1995; 121: 2031-2046Crossref PubMed Google Scholar, 8.Hajj R. Baranek T. Le Naour R. Lesimple P. Puchelle E. Coraux C. Basal cells of the human adult airway surface epithelium retain transit-amplifying cell properties.Stem Cells. 2007; 25: 139-148Crossref PubMed Scopus (96) Google Scholar, 9.Kumar P.A. Hu Y. Yamamoto Y. Hoe N.B. Wei T.S. Mu D. Sun Y. Joo L.S. Dagher R. Zielonka E.M. Wang de Y. Lim B. Chow V.T. Crum C.P. Xian W. McKeon F. Distal airway stem cells yield alveoli in vitro and during lung regeneration following H1N1 influenza infection.Cell. 2011; 147: 525-538Abstract Full Text Full Text PDF PubMed Scopus (333) Google Scholar, 10.Rock J.R. Onaitis M.W. Rawlins E.L. Lu Y. Clark C.P. Xue Y. Randell S.H. Hogan B.L. Basal cells as stem cells of the mouse trachea and human airway epithelium.Proc. Natl. Acad. Sci. U.S.A. 2009; 106: 12771-12775Crossref PubMed Scopus (783) Google Scholar, 11.Watson J.K. Rulands S. Wilkinson A.C. Wuidart A. Ousset M. Van Keymeulen A. Gottgens B. Blanpain C. Simons B.D. Rawlins E.L. Clonal Dynamics Reveal Two Distinct Populations of Basal Cells in Slow-Turnover Airway Epithelium.Cell Reports. 2015; 12: 90-101Abstract Full Text Full Text PDF PubMed Scopus (0) Google Scholar). In addition, SQCCs generally develop following smoking-induced squamous metaplasia, an injury response of basal cells that replaces the normal quiescent mucociliary epithelium with a hyperproliferative squamous epithelium (2.Ishizumi T. McWilliams A. MacAulay C. Gazdar A. Lam S. Natural history of bronchial preinvasive lesions.Cancer Metastasis Rev. 2010; 29: 5-14Crossref PubMed Scopus (64) Google Scholar, 12.Dupuit F. Gaillard D. Hinnrasky J. Mongodin E. de Bentzmann S. Copreni E. Puchelle E. Differentiated and functional human airway epithelium regeneration in tracheal xenografts.Am. J. Physiol. Lung Cell Mol Physiol. 2000; 278: L165-L176Crossref PubMed Google Scholar, 13.Lee J.J. Liu D. Lee J.S. Kurie J.M. Khuri F.R. Ibarguen H. Morice R.C. Walsh G. Ro J.Y. Broxson A. Hong W.K. Hittelman W.N. Long-term impact of smoking on lung epithelial proliferation in current and former smokers.J. Natl. Cancer Inst. 2001; 93: 1081-1088Crossref PubMed Google Scholar, 14.Peters E.J. Morice R. Benner S.E. Lippman S. Lukeman J. Lee J.S. Ro J.Y. Hong W.K. Squamous metaplasia of the bronchial mucosa and its relationship to smoking.Chest. 1993; 103: 1429-1432Abstract Full Text Full Text PDF PubMed Google Scholar, 15.Tipton D.L. Crocker T.T. Duration of bronchial squamous metaplasia produced in dogs by cigarette smoke condensate.J. Natl. Cancer Inst. 1964; 33: 487-495PubMed Google Scholar, 16.Willey J.C. Grafstrom R.C. Moser Jr, C.E. Ozanne C. Sundquvist K. Harris C.C. Biochemical and morphological effects of cigarette smoke condensate and its fractions on normal human bronchial epithelial cells in vitro.Cancer Res. 1987; 47: 2045-2049PubMed Google Scholar). With continued smoking, squamous metaplasia progresses to increasing grades of dysplasia, followed by invasive carcinoma (2.Ishizumi T. McWilliams A. MacAulay C. Gazdar A. Lam S. Natural history of bronchial preinvasive lesions.Cancer Metastasis Rev. 2010; 29: 5-14Crossref PubMed Scopus (64) Google Scholar), suggesting that SQCC pathogenesis originates from the squamous injury response of basal cells, which becomes progressively dysregulated. Ninety-four percent of SQCCs harbor copy number gains in both SOX2 and PIK3CA at 3q26–28 (17.Bass A.J. Watanabe H. Mermel C.H. Yu S. Perner S. Verhaak R.G. Kim S.Y. Wardwell L. Tamayo P. Gat-Viks I. Ramos A.H. Woo M.S. Weir B.A. Getz G. Beroukhim R. O'Kelly M. Dutt A. Rozenblatt-Rosen O. Dziunycz P. Komisarof J. Chirieac L.R. Lafargue C.J. Scheble V. Wilbertz T. Ma C. Rao S. Nakagawa H. Stairs D.B. Lin L. Giordano T.J. Wagner P. Minna J.D. Gazdar A.F. Zhu C.Q. Brose M.S. Cecconello I. Jr U.R. Marie S.K. Dahl O. Shivdasani R.A. Tsao M.S. Rubin M.A. Wong K.K. Regev A. Hahn W.C. Beer D.G. Rustgi A.K. Meyerson M. SOX2 is an amplified lineage-survival oncogene in lung and esophageal squamous cell carcinomas.Nat. Genet. 2009; 41: 1238-1242Crossref PubMed Scopus (679) Google Scholar, 18.Hammerman P.S. Lawrence M.S. Voet D. Jing R. Cibulskis K. Sivachenko A. Stojanov P. McKenna A. Lander E.S. Gabriel S. Getz G. Sougnez C. Imielinski M. Helman E. Hernandez B. Pho N.H. Meyerson M. Chu A. Chun H.J. Mungall A.J. Pleasance E. Gordon Robertson A. Sipahimalani P. Stoll D. Balasundaram M. Birol I. Butterfield Y.S. Chuah E. Coope R.J. Corbett R. Dhalla N. Guin R. He A. Hirst C. Hirst M. Holt R.A. Lee D. Li H.I. Mayo M. Moore R.A. Mungall K. Ming Nip K. Olshen A. Schein J.E. Slobodan J.R. Tam A. Thiessen N. Varhol R. Zeng T. Zhao Y. Jones S.J. Marra M.A. Saksena G. Cherniack A.D. Schumacher S.E. Tabak B. Carter S.L. Nguyen H. Onofrio R.C. Crenshaw A. Ardlie K. Beroukhim R. Winckler W. Protopopov A. Zhang J. Hadjipanayis A. Lee S. Xi R. Yang L. Ren X. Zhang H. Shukla S. Chen P.C. Haseley P. Lee E. Chin L. Park P.J. Kucherlapati R. Socci N.D. Liang Y. Schultz N. Borsu L. Lash A.E. Viale A. Sander C. Ladanyi M. Todd Auman J. Hoadley K.A. Wilkerson M.D. Shi Y. Liquori C. Meng S. Li L. Turman Y.J. Topal M.D. Tan D. Waring S. Buda E. Walsh J. Jones C.D. Mieczkowski P.A. Singh D. Wu J. Gulabani A. Dolina P. Bodenheimer T. Hoyle A.P. Simons J.V. Soloway M.G. Mose L.E. Jefferys S.R. Balu S. O'Connor B.D. Prins J.F. Liu J. Chiang D.Y. Neil Hayes D. Perou C.M. Cope L. Danilova L. Weisenberger D.J. Maglinte D.T. Pan F. Van Den Berg D.J. Triche Jr., T. Herman J.G. Baylin S.B. Laird P.W. Noble M. Gehlenborg N. Dicara D. Wu C.J. Yingchun Liu S. Zou L. Lin P. Cho J. Nazaire M.D. Robinson J. Thorvaldsdottir H. Mesirov J. Sinha R. Ciriello G. Cerami E. Gross B. Jacobsen A. Gao J. Arman Aksoy B. Weinhold N. Ramirez R. Taylor B.S. Antipin Y. Reva B. Shen R. Mo Q. Seshan V. Paik P.K. Akbani R. Zhang N. Broom B.M. Casasent T. Unruh A. Wakefield C. Craig Cason R. Baggerly K.A. Weinstein J.N. Haussler D. Benz C.C. Stuart J.M. Zhu J. Szeto C. Scott G.K. Yau C. Ng S. Goldstein T. Waltman P. Sokolov A. Ellrott K. Collisson E.A. Zerbino D. Wilks C. Ma S. Craft B. Du Y. Cabanski C. Walter V. Marron J.S. Liu Y. Wang K. Creighton C.J. Zhang Y. Travis W.D. Rekhtman N. Yi J. Aubry M.C. Cheney R. Dacic S. Flieder D. Funkhouser W. Illei P. Myers J. Tsao M.S. Penny R. Mallery D. Shelton T. Hatfield M. Morris S. Yena P. Shelton C. Sherman M. Paulauskis J. Govindan R. Azodo I. Beer D. Bose R. Byers L.A. Carbone D. Chang L.W. Chiang D. Chun E. Collisson E. Ding L. Heymach J. Ida C. Johnson B. Jurisica I. Kaufman J. Kosari F. Kwiatkowski D. Maher C.A. Mungall A. Pao W. Peifer M. Robertson G. Rusch V. Siegfried J. Stuart J. Thomas R.K. Tomaszek S. Vaske C. Weisenberger D. Wigle D.A. Yang P. John Zhang J. Jensen M.A. Sfeir R. Kahn A.B. Chu A.L. Kothiyal P. Wang Z. Snyder E.E. Pontius J. Pihl T.D. Ayala B. Backus M. Walton J. Baboud J. Berton D.L. Nicholls M.C. Srinivasan D. Raman R. Girshik S. Kigonya P.A. Alonso S. Sanbhadti R.N. Barletta S.P. Greene J.M. Pot D.A. Bandarchi-Chamkhaleh B. Boyd J. Weaver J. Azodo I.A. Tomaszek S.C. Christine Aubry M. Ida C.M. Brock M.V. Rogers K. Rutledge M. Brown T. Lee B. Shin J. Trusty D. Dhir R. Siegfried J.M. Potapova O. Fedosenko K.V. Nemirovich-Danchenko E. Zakowski M. Iacocca M.V. Brown J. Rabeno B. Czerwinski C. Petrelli N. Fan Z. Todaro N. Eckman J. Kimryn Rathmell W. Thorne L.B. Huang M. Boice L. Hill A. Curley E. Morrison C. Gaudioso C. Bartlett J.M. Kodeeswaran S. Zanke B. Sekhon H. David K. Juhl H. Van Le X. Kohl B. Thorp R. Viet Tien N. Van Bang N. Sussman H. Duc Phu B. Hajek R. Phi Hung N. Khan K.Z. Muley T. Mills Shaw K.R. Sheth M. Buetow K. Davidsen T. Demchok J.A. Eley G. Ferguson M. Dillon L.A. Schaefer C. Guyer M.S. Ozenberger B.A. Palchik J.D. Peterson J. Sofia H.J. Thomson E. Johnson B.E. Comprehensive genomic characterization of squamous cell lung cancers.Nature. 2012; 489: 519-525Crossref PubMed Scopus (2378) Google Scholar) (TCGA data, www.cbioportal.org), which are commonly selected during high grade dysplasia (19.McCaughan F. Pole J.C. Bankier A.T. Konfortov B.A. Carroll B. Falzon M. Rabbitts T.H. George P.J. Dear P.H. Rabbitts P.H. Progressive 3q amplification consistently targets SOX2 in preinvasive squamous lung cancer.Am. J. Respir. Crit. Care Med. 2010; 182: 83-91Crossref PubMed Scopus (81) Google Scholar, 20.Schneider F. Luvison A. Cieply K. Dacic S. Sex-determining region Y-box 2 amplification in preneoplastic squamous lesions of the lung.Hum. Pathol. 2013; 44: 706-711Crossref PubMed Google Scholar). These gains appear to be selected to stabilize a normally self-limiting squamous injury response. Indeed, premalignant stages including squamous metaplasia and lower grade dysplasia, which generally do not have 3q copy number gains, frequently regress spontaneously (21.Bota S. Auliac J.B. Paris C. Metayer J. Sesboue R. Nouvet G. Thiberville L. Follow-up of bronchial precancerous lesions and carcinoma in situ using fluorescence endoscopy.Am. J. Respir. Crit. Care Med. 2001; 164: 1688-1693Crossref PubMed Google Scholar, 22.Hoshino H. Shibuya K. Chiyo M. Iyoda A. Yoshida S. Sekine Y. Iizasa T. Saitoh Y. Baba M. Hiroshima K. Ohwada H. Fujisawa T. Biological features of bronchial squamous dysplasia followed up by autofluorescence bronchoscopy.Lung Cancer. 2004; 46: 187-196Abstract Full Text Full Text PDF PubMed Scopus (35) Google Scholar, 23.Pasic A. van Vliet E. Breuer R.H. Risse E.J. Snijders P.J. Postmus P.E. Sutedja T.G. Smoking behavior does not influence the natural course of pre-invasive lesions in bronchial mucosa.Lung Cancer. 2004; 45: 153-154Abstract Full Text Full Text PDF PubMed Scopus (0) Google Scholar), whereas high grade dysplasia, which commonly has 3q copy number gains, is less prone to regression and more likely to progress to invasive carcinoma than earlier stages (24.Breuer R.H. Pasic A. Smit E.F. van Vliet E. Vonk Noordegraaf A. Risse E.J. Postmus P.E. Sutedja T.G. The natural course of preneoplastic lesions in bronchial epithelium.Clin. Cancer Res. 2005; 11: 537-543PubMed Google Scholar, 25.Jeremy George P. Banerjee A.K. Read C.A. O'Sullivan C. Falzon M. Pezzella F. Nicholson A.G. Shaw P. Laurent G. Rabbitts P.H. Surveillance for the detection of early lung cancer in patients with bronchial dysplasia.Thorax. 2007; 62: 43-50Crossref PubMed Scopus (79) Google Scholar, 26.Lam S. leRiche J.C. Zheng Y. Coldman A. MacAulay C. Hawk E. Kelloff G. Gazdar A.F. Sex-related differences in bronchial epithelial changes associated with tobacco smoking.J. Natl. Cancer Inst. 1999; 91: 691-696Crossref PubMed Google Scholar, 27.van Boerdonk R.A. Smesseim I. Heideman D.A. Coupe V.M. Tio D. Grunberg K. Thunnissen E. Snijders P.J. Postmus P.E. Smit E.F. Daniels J.M. Sutedja T.G. Close Surveillance with Long-Term Follow-up of Subjects with Preinvasive Endobronchial Lesions.Am. J. Respir. Crit. Care Med. 2015; 192: 1483-1489Crossref PubMed Google Scholar). Notably, SOX2 and PI3K (PIK3CA), within the 3q amplicon, cooperate to induce a hyperplasic squamous-committed stem cell state in basal cells (28.Kim B.R. Van de Laar E. Cabanero M. Tarumi S. Hasenoeder S. Wang D. Virtanen C. Suzuki T. Bandarchi B. Sakashita S. Pham N.A. Lee S. Keshavjee S. Waddell T.K. Tsao M.S. Moghal N. SOX2 and PI3K Cooperate to Induce and Stabilize a Squamous-Committed Stem Cell Injury State during Lung Squamous Cell Carcinoma Pathogenesis.PLos Biol. 2016; 14: e1002581Crossref PubMed Scopus (18) Google Scholar), providing a molecular and stem cell-based explanation for how the 3q amplicon stabilizes the squamous injury response. Because of the importance of SOX2 in this process, inhibition of its activity during early stages of SQCC pathogenesis could slow disease progression. In addition, because growth of many cancers is dependent on the transcription factors that specify their lineage from stem cells (29.Buchwalter G. Hickey M.M. Cromer A. Selfors L.M. Gunawardane R.N. Frishman J. Jeselsohn R. Lim E. Chi D. Fu X. Schiff R. Brown M. Brugge J.S. PDEF promotes luminal differentiation and acts as a survival factor for ER-positive breast cancer cells.Cancer Cell. 2013; 23: 753-767Abstract Full Text Full Text PDF PubMed Scopus (40) Google Scholar, 30.Chi P. Chen Y. Zhang L. Guo X. Wongvipat J. Shamu T. Fletcher J.A. Dewell S. Maki R.G. Zheng D. Antonescu C.R. Allis C.D. Sawyers C.L. ETV1 is a lineage survival factor that cooperates with KIT in gastrointestinal stromal tumours.Nature. 2010; 467: 849-853Crossref PubMed Scopus (205) Google Scholar, 31.Lin L. Bass A.J. Lockwood W.W. Wang Z. Silvers A.L. Thomas D.G. Chang A.C. Lin J. Orringer M.B. Li W. Glover T.W. Giordano T.J. Lam W.L. Meyerson M. Beer D.G. Activation of GATA binding protein 6 (GATA6) sustains oncogenic lineage-survival in esophageal adenocarcinoma.Proc. Natl. Acad. Sci. U.S.A. 2012; 109: 4251-4256Crossref PubMed Scopus (66) Google Scholar, 32.McGill G.G. Horstmann M. Widlund H.R. Du J. Motyckova G. Nishimura E.K. Lin Y.L. Ramaswamy S. Avery W. Ding H.F. Jordan S.A. Jackson I.J. Korsmeyer S.J. Golub T.R. Fisher D.E. Bcl2 regulation by the melanocyte master regulator Mitf modulates lineage survival and melanoma cell viability.Cell. 2002; 109: 707-718Abstract Full Text Full Text PDF PubMed Scopus (558) Google Scholar, 33.Salari K. Spulak M.E. Cuff J. Forster A.D. Giacomini C.P. Huang S. Ko M.E. Lin A.Y. van de Rijn M. Pollack J.R. CDX2 is an amplified lineage-survival oncogene in colorectal cancer.Proc. Natl. Acad. Sci. U.S.A. 2012; 109: E3196-E3205Crossref PubMed Scopus (50) Google Scholar, 34.Tanaka H. Yanagisawa K. Shinjo K. Taguchi A. Maeno K. Tomida S. Shimada Y. Osada H. Kosaka T. Matsubara H. Mitsudomi T. Sekido Y. Tanimoto M. Yatabe Y. Takahashi T. Lineage-specific dependency of lung adenocarcinomas on the lung development regulator TTF-1.Cancer Res. 2007; 67: 6007-6011Crossref PubMed Scopus (157) Google Scholar, 35.Weir B.A. Woo M.S. Getz G. Perner S. Ding L. Beroukhim R. Lin W.M. Province M.A. Kraja A. Johnson L.A. Shah K. Sato M. Thomas R.K. Barletta J.A. Borecki I.B. Broderick S. Chang A.C. Chiang D.Y. Chirieac L.R. Cho J. Fujii Y. Gazdar A.F. Giordano T. Greulich H. Hanna M. Johnson B.E. Kris M.G. Lash A. Lin L. Lindeman N. Mardis E.R. McPherson J.D. Minna J.D. Morgan M.B. Nadel M. Orringer M.B. Osborne J.R. Ozenberger B. Ramos A.H. Robinson J. Roth J.A. Rusch V. Sasaki H. Shepherd F. Sougnez C. Spitz M.R. Tsao M.S. Twomey D. Verhaak R.G. Weinstock G.M. Wheeler D.A. Winckler W. Yoshizawa A. Yu S. Zakowski M.F. Zhang Q. Beer D.G. Wistuba I.I. Watson M.A. Garraway L.A. Ladanyi M. Travis W.D. Pao W. Rubin M.A. Gabriel S.B. Gibbs R.A. Varmus H.E. Wilson R.K. Lander E.S. Meyerson M. Characterizing the cancer genome in lung adenocarcinoma.Nature. 2007; 450: 893-898Crossref PubMed Scopus (855) Google Scholar), targeting SOX2 later, in frank carcinoma, may also be beneficial. Accordingly, reduction in SOX2 activity inhibits growth of SQCC cell lines with 3q copy number gains (17.Bass A.J. Watanabe H. Mermel C.H. Yu S. Perner S. Verhaak R.G. Kim S.Y. Wardwell L. Tamayo P. Gat-Viks I. Ramos A.H. Woo M.S. Weir B.A. Getz G. Beroukhim R. O'Kelly M. Dutt A. Rozenblatt-Rosen O. Dziunycz P. Komisarof J. Chirieac L.R. Lafargue C.J. Scheble V. Wilbertz T. Ma C. Rao S. Nakagawa H. Stairs D.B. Lin L. Giordano T.J. Wagner P. Minna J.D. Gazdar A.F. Zhu C.Q. Brose M.S. Cecconello I. Jr U.R. Marie S.K. Dahl O. Shivdasani R.A. Tsao M.S. Rubin M.A. Wong K.K. Regev A. Hahn W.C. Beer D.G. Rustgi A.K. Meyerson M. SOX2 is an amplified lineage-survival oncogene in lung and esophageal squamous cell carcinomas.Nat. Genet. 2009; 41: 1238-1242Crossref PubMed Scopus (679) Google Scholar, 36.Fukazawa T. Guo M. Ishida N. Yamatsuji T. Takaoka M. Yokota E. Haisa M. Miyake N. Ikeda T. Okui T. Takigawa N. Maeda Y. Naomoto Y. SOX2 suppresses CDKN1A to sustain growth of lung squamous cell carcinoma.Scientific Reports. 2016; 6: 20113Crossref PubMed Scopus (0) Google Scholar, 37.Watanabe H. Ma Q. Peng S. Adelmant G. Swain D. Song W. Fox C. Francis J.M. Pedamallu C.S. Deluca D.S. Brooks A.N. Wang S. Que J. Rustgi A.K. Wong K.K. Ligon K.L. Liu X.S. Marto J.A. Meyerson M. Bass A.J. SOX2 and p63 colocalize at genetic loci in squamous cell carcinomas.J. Clin. Invest. 2014; 124: 1636-1645Crossref PubMed Scopus (84) Google Scholar). Furthermore, SOX2 also has been suggested to have roles affecting SQCC malignancy that do not necessarily arise from affecting stem cell fate along the squamous lineage (37.Watanabe H. Ma Q. Peng S. Adelmant G. Swain D. Song W. Fox C. Francis J.M. Pedamallu C.S. Deluca D.S. Brooks A.N. Wang S. Que J. Rustgi A.K. Wong K.K. Ligon K.L. Liu X.S. Marto J.A. Meyerson M. Bass A.J. SOX2 and p63 colocalize at genetic loci in squamous cell carcinomas.J. Clin. Invest. 2014; 124: 1636-1645Crossref PubMed Scopus (84) Google Scholar, 38.Justilien V. Walsh M.P. Ali S.A. Thompson E.A. Murray N.R. Fields A.P. The PRKCI and SOX2 oncogenes are coamplified and cooperate to activate hedgehog signaling in lung squamous cell carcinoma.Cancer Cell. 2014; 25: 139-151Abstract Full Text Full Text PDF PubMed Scopus (188) Google Scholar). Overall, SOX2 is thus a compelling target for treatment of premalignant and invasive disease. Because SOX2 lacks an obvious small molecule binding domain, it is challenging to design an inhibitor, as compared with e.g. the estrogen and androgen receptors, where antagonists related to their natural ligands have been successfully developed to treat breast and prostate cancer, respectively (39.Dalmau E. Armengol-Alonso A. Munoz M. Segui-Palmer M.A. Current status of hormone therapy in patients with hormone receptor positive (HR+) advanced breast cancer.Breast. 2014; 23: 710-720Abstract Full Text Full Text PDF PubMed Google Scholar, 40.Foley C. Mitsiades N. Moving beyond the androgen receptor (AR): targeting AR-interacting proteins to treat prostate cancer.Hormones Cancer. 2016; 7: 84-103Crossref PubMed Scopus (0) Google Scholar). Because PI3K cooperates with SOX2 to drive the squamous injury response in stem cells (28.Kim B.R. Van de Laar E. Cabanero M. Tarumi S. Hasenoeder S. Wang D. Virtanen C. Suzuki T. Bandarchi B. Sakashita S. Pham N.A. Lee S. Keshavjee S. Waddell T.K. Tsao M.S. Moghal N. SOX2 and PI3K Cooperate to Induce and Stabilize a Squamous-Committed Stem Cell Injury State during Lung Squamous Cell Carcinoma Pathogenesis.PLos Biol. 2016; 14: e1002581Crossref PubMed Scopus (18) Google Scholar), PI3K inhibitors could theoretically be used in the treatment of SOX2-driven neoplasias. However, in a phase II SQCC clinical trial, the PI3K inhibitor BKM120 was ineffective at its maximum tolerated dose (41.Vansteenkiste J.F. Canon J.L. Braud F.D. Grossi F. De Pas T. Gray J.E. Su W.C. Felip E. Yoshioka H. Gridelli C. Dy G.K. Thongprasert S. Reck M. Aimone P. Vidam G.A. Roussou P. Wang Y.A. Di Tomaso E. Soria J.C. Safety and efficacy of buparlisib (BKM120) in patients with PI3K pathway-activated non-small cell lung cancer: results from the phase II BASALT-1 study.J. Thoracic Oncol. 2015; 10: 1319-1327Abstract Full Text Full Text PDF PubMed Scopus (0) Google Scholar). Whereas PI3K inhibitors might be more effective during preneoplasia, their effectiveness in SQCC might be improved by combining them with drugs that more directly target SOX2 activity. Such drugs could inhibit protein-protein interactions or the activity of chromatin modifying enzymes that are essential for SOX2-dependent effects on transcription. For example, small molecules that inhibit the interaction between TP53 and MDM2, or interactions between BET domain-containing proteins and acetyl-lysine residues, are in clinical trials (42.Andreeff M. Kelly K.R. Yee K. Assouline S. Strair R. Popplewell L. Bowen D. Martinelli G. Drummond M.W. Vyas P. Kirschbaum M. Iyer S.P. Ruvolo V. Gonzalez G.M. Huang X. Chen G. Graves B. Blotner S. Bridge P. Jukofsky L. Middleton S. Reckner M. Rueger R. Zhi J. Nichols G. Kojima K. Results of the phase I trial of RG7112, a small-molecule MDM2 antagonist in leukemia.Clin. Cancer Res. 2016; 22: 868-876Crossref PubMed Scopus (136) Google Scholar) (e.g. GSK525762, https://clinicaltrials.gov). In addition, romidepsin and vorinostat are histone deacetylase inhibitors that are approved for treatment of cutaneous T-cell lymphoma (43.Zinzani P.L. Bonthapally V. Huebner D. Lutes R. Chi A. Pileri S. Panoptic clinical review of the current and future treatment of relapsed/refractory T-cell lymphomas: Cutaneous T-cell lymphomas.Crit. Rev. Oncol. Hematol. 2016; 99: 228-240Crossref PubMed Google Scholar), whereas histone methyltransferase inhibitors are in clinical trials for different cancers (e.g. EPZ-5676, https://clinicaltrials.gov). To rationally develop effective anti-SOX2 targeting strategies, a comprehensive understanding of the SOX2 interactome and its potentially diverse functions in SQCC pathogenesis is required. Although SOX2 interactomes have been described in several previous studies (37.Watanabe H. Ma Q. Peng S. Adelmant G. Swain D. Song W. Fox C. Francis J.M. Pedamallu C.S. Deluca D.S. Brooks A.N. Wang S. Que J. Rustgi A.K. Wong K.K. Ligon K.L. Liu X.S. Marto J.A. Meyerson M. Bass A.J. SOX2 and p63 colocalize at genetic loci in squamous cell carcinomas.J. Clin. Invest. 2014; 124: 1636-1645Crossref PubMed Scopus (84) Google Scholar, 44.Cox J.L. Wilder P.J. Gilmore J.M. Wuebben E.L. Washburn M.P. Rizzino A. The SOX2-interactome in brain cancer cells identifies the requirement of MSI2 and USP9X for the growth of brain tumor cells.PLoS ONE. 2013; 8: e62857Crossref PubMed Scopus (70) Google Scholar, 45.Ding J. Huang X. Shao N. Zhou H. Lee D.F. Faiola F. Fidalgo M. Guallar D. Saunders A. Shliaha P.V. Wang H. Waghray A. Papatsenko D. Sanchez-Priego C. Li D. Yuan Y. Lemischka I.R. Shen L. Kelley K. Deng H. Shen X. Wang J. Tex10 coordinates epigenetic control of super-enhancer activity in pluripotency and reprogramming.Cell Stem Cell. 2015; 16: 653-668Abstract Full Text Full Text PDF PubMed Google Scholar, 46.Engelen E. Akinci U. Bryne J.C. Hou J. Gontan C. Moen M. Szumska D. Kockx C. van Ijcken W. Dekkers D.H. Demmers J. Rijkers E.J. Bhattacharya S. Philipsen S. Pevny L.H. Grosveld F.G. Rottier R.J. Lenhard B. Poot R.A. Sox2 cooperates with Chd7 to regulate genes that are mutated in human syndromes.Nat. Genet. 2011; 43: 607-611Crossref PubMed Scopus (163) Google Scholar, 47.Fang X. Yoon J.G. Li L. Tsai Y.S. Zheng S. Hood L. Goodlett D.R. Foltz G. Lin B. Landscape of the SOX2 protein-protein interactome.Proteomics. 2011; 11: 921-934Crossref PubMed Scopus (0) Google Scholar, 48.Gao Z. Cox J.L. Gilmore J.M. Ormsbee B.D. Mallanna S.K. Washburn M.P. Rizzino A. Determination of protein interactome of transcription factor Sox2 in embryonic stem cells engineered for inducible expression of four reprogramming factors.J. Biol. Chem. 2012; 287: 11384-11397Abstract Full Text Full Text PDF PubMed Scopus (54) Google Scholar, 49.Mallanna S.K. Ormsbee B.D. Iacovino M. Gilmore J.M. Cox J.L. Kyba M. Washburn M.P. Rizzino A. Proteomic analysis of Sox2-associated proteins
Referência(s)