Artigo Acesso aberto Revisado por pares

Ultimate Boundedness Results for Noise-Corrupted Quaternion Output Feedback Attitude Tracking Controllers

2017; American Institute of Aeronautics and Astronautics; Volume: 40; Issue: 12 Linguagem: Inglês

10.2514/1.g002164

ISSN

1533-3884

Autores

Sungpil Yang, Frédéric Mazenc, Maruthi R. Akella,

Tópico(s)

Space Satellite Systems and Control

Resumo

No AccessEngineering NoteUltimate Boundedness Results for Noise-Corrupted Quaternion Output Feedback Attitude Tracking ControllersSungpil Yang, Frédéric Mazenc and Maruthi R. AkellaSungpil YangUniversity of Texas at Austin, Austin, Texas 78712*Ph.D. Candidate, Department of Aerospace Engineering and Engineering Mechanics, 1 University Station; . Student Member AIAA.Search for more papers by this author, Frédéric MazencInria, 91192 Gif-sur-Yvette, France†Chargé de Recherche, French Institute for Research in Computer Science and Automation Project Team, Dynamical Interconnected Systems in Complex Environments, Laboratoire des Signaux et Systèmes (Unités Mixtes de Recherche, CNRS 8506), CentraleSupélec, Université Paris-Sud, 3 Rue Joliot Curie; also L2S-CNRS-CentraleSupelec 3 rue Joliot-Curie, 91192 Gif sur Yvette cedex, France; .Search for more papers by this author and Maruthi R. AkellaUniversity of Texas at Austin, Austin, Texas 78712‡Professor, Department of Aerospace Engineering and Engineering Mechanics, 1 University Station. Myron L. Begeman Fellow in Engineering; . Associate Fellow AIAA.Search for more papers by this authorPublished Online:7 Aug 2017https://doi.org/10.2514/1.G002164SectionsRead Now ToolsAdd to favoritesDownload citationTrack citations ShareShare onFacebookTwitterLinked InRedditEmail About References [1] Wen J.-Y. and Kreutz-Delgado K., “The Attitude Control Problem,” IEEE Transactions on Automatic Control, Vol. 36, No. 10, 1991, pp. 1148–1162. doi:https://doi.org/10.1109/9.90228 IETAA9 0018-9286 CrossrefGoogle Scholar[2] Wallsgrove R. J. and Akella M. R., “Globally Stabilizing Saturated Attitude Control in the Presence of Bounded Unknown Disturbances,” Journal of Guidance, Control, and Dynamics, Vol. 28, No. 5, 2005, pp. 957–963. doi:https://doi.org/10.2514/1.9980 JGCODS 0731-5090 LinkGoogle Scholar[3] Wie B., Space Vehicle Dynamics and Control, 2nd ed., AIAA, Reston, VA, 2008. LinkGoogle Scholar[4] Seo D. and Akella M. R., “High-Performance Spacecraft Adaptive Attitude-Tracking Control Through Attracting-Manifold Design,” Journal of Guidance, Control, and Dynamics, Vol. 31, No. 4, 2008, pp. 884–891. doi:https://doi.org/10.2514/1.33308 JGCODS 0731-5090 LinkGoogle Scholar[5] Mercker T. H. and Akella M. R., “Rigid-Body Attitude Tracking with Vector Measurements and Unknown Gyro Bias,” Journal of Guidance, Control, and Dynamics, Vol. 34, No. 5, 2011, pp. 1474–1484. doi:https://doi.org/10.2514/1.53111 JGCODS 0731-5090 LinkGoogle Scholar[6] Lizarralde F. and Wen J. T., “Attitude Control Without Angular Velocity Measurement: A Passivity Approach,” IEEE Transactions on Automatic Control, Vol. 41, No. 3, 1996, pp. 468–472. doi:https://doi.org/10.1109/9.486654 IETAA9 0018-9286 CrossrefGoogle Scholar[7] Tsiotras P., “Further Passivity Results for the Attitude Control Problem,” IEEE Transactions on Automatic Control, Vol. 43, No. 11, 1998, pp. 1597–1600. doi:https://doi.org/10.1109/9.728877 IETAA9 0018-9286 CrossrefGoogle Scholar[8] Akella M. R., “Rigid Body Attitude Tracking Without Angular Velocity Feedback,” Systems and Control Letters, Vol. 42, No. 4, 2001, pp. 321–326. doi:https://doi.org/10.1016/S0167-6911(00)00102-X CrossrefGoogle Scholar[9] Subbarao K. and Akella M. R., “Differentiator-Free Nonlinear Proportional-Integral Controllers for Rigid-Body Attitude Stabilization,” Journal of Guidance, Control, and Dynamics, Vol. 27, No. 6, 2004, pp. 1092–1096. doi:https://doi.org/10.2514/1.8366 JGCODS 0731-5090 LinkGoogle Scholar[10] Akella M. R., Valdivia A. and Kotamraju G. R., “Velocity-Free Attitude Controllers Subject to Actuator Magnitude and Rate Saturations,” Journal of Guidance, Control, and Dynamics, Vol. 28, No. 4, 2005, pp. 659–666. doi:https://doi.org/10.2514/1.8784 JGCODS 0731-5090 LinkGoogle Scholar[11] Bin X., Mu H., Dong L., Cuijie C. and Kaiyan Y., “Output Feedback Attitude Tracking Control for a Rigid Spacecraft with Dynamic Uncertainty,” CCC 2008. 27th Chinese Control Conference 2008, IEEE Publ., Piscataway, NJ, 2008, pp. 464–468. doi:https://doi.org/10.1109/CHICC.2008.4605788 Google Scholar[12] Tayebi A., “Unit Quaternion-Based Output Feedback for the Attitude Tracking Problem,” IEEE Transactions on Automatic Control, Vol. 53, No. 6, 2008, pp. 1516–1520. doi:https://doi.org/10.1109/TAC.2008.927789 IETAA9 0018-9286 CrossrefGoogle Scholar[13] Costic B. T., Dawson D. M., De Queiroz M. S. and Kapila V., “Quaternion-Based Adaptive Attitude Tracking Controller Without Velocity Measurements,” Journal of Guidance, Control, and Dynamics, Vol. 24, No. 6, 2001, pp. 1214–1222. doi:https://doi.org/10.2514/2.4837 JGCODS 0731-5090 LinkGoogle Scholar[14] Crassidis J. L., Markley F. L. and Cheng Y., “Survey of Nonlinear Attitude Estimation Methods,” Journal of Guidance, Control, and Dynamics, Vol. 30, No. 1, 2007, pp. 12–28. doi:https://doi.org/10.2514/1.22452 JGCODS 0731-5090 LinkGoogle Scholar[15] Wertz J. R., “ Spacecraft Attitude Determination and Control,” Astrophysics and Space Science Library, D. Reidel Publ., Dordrecht, The Netherlands, 1978, pp. 420–428. Google Scholar[16] Shuster M. D. and Oh S., “Three-Axis Attitude Determination from Vector Observations,” Journal of Guidance, Control, and Dynamics, Vol. 4, No. 1, 1981, pp. 70–77. doi:https://doi.org/10.2514/3.19717 JGCODS 0731-5090 LinkGoogle Scholar[17] Markley F. L., “Attitude Determination Using Vector Observations: A Fast Optimal Matrix Algorithm,” Journal of the Astronautical Science, Vol. 41, No. 2, 1993, pp. 261–280. JALSA6 0021-9142 Google Scholar[18] Tayebi A., Roberts A. and Benallegue A., “Inertial Vector Measurements Based Velocity-Free Attitude Stabilization,” IEEE Transactions on Automatic Control, Vol. 58, No. 11, 2013, pp. 2893–2898. doi:https://doi.org/10.1109/TAC.2013.2256689 IETAA9 0018-9286 CrossrefGoogle Scholar[19] Thakur D. and Akella M. R., “Gyro-Free Rigid-Body Attitude Stabilization Using Only Vector Measurements,” Journal of Guidance, Control, and Dynamics, Vol. 38, No. 4, 2015, pp. 811–818. doi:https://doi.org/10.2514/1.G000623 JGCODS 0731-5090 LinkGoogle Scholar[20] Schlanbusch R., Loria A., Kristiansen R. and Nicklasson P. J., “PD+ Attitude Control of Rigid Bodies with Improved Performance,” 2010 49th IEEE Conference on Decision and Control (CDC), IEEE Publ., Piscataway, NJ, 2010, pp. 7069–7074. doi:https://doi.org/10.1109/CDC.2010.5717227 Google Scholar[21] Schlanbusch R., Loria A., Kristiansen R. and Nicklasson P. J., “PD+ Based Output Feedback Attitude Control of Rigid Bodies,” IEEE Transactions on Automatic Control, Vol. 57, No. 8, 2012, pp. 2146–2152. doi:https://doi.org/10.1109/TAC.2012.2183189 CrossrefGoogle Scholar[22] Chaillet A. and Lora A., “Uniform Semiglobal Practical Asymptotic Stability for Non-Autonomous Cascaded Systems and Applications,” Automatica, Vol. 44, No. 2, 2008, pp. 337–347. doi:https://doi.org/10.1016/j.automatica.2007.05.019 ATCAA9 0005-1098 CrossrefGoogle Scholar[23] Xian B., Diao C., Zhao B. and Zhang Y., “Nonlinear Robust Output Feedback Tracking Control of a Quadrotor UAV Using Quaternion Representation,” Nonlinear Dynamics, Vol. 79, No. 4, 2015, pp. 2735–2752. doi:https://doi.org/10.1007/s11071-014-1843-x NODYES 0924-090X CrossrefGoogle Scholar[24] Bandyopadhyay S., Chung S. and Hadaegh F. Y., “Nonlinear Attitude Control of Spacecraft with a Large Captured Object,” Journal of Guidance, Control, and Dynamics, Vol. 39, No. 4, 2016, pp. 754–769. doi:https://doi.org/10.2514/1.G001341 JGCODS 0731-5090 LinkGoogle Scholar[25] Mazenc F., Yang S. and Akella M. R., “Output Feedback, Attitude Dynamics, Robustness,” 2015 European Control Conference (ECC), IEEE Publ., Piscataway, NJ, 2015, pp. 1249–1254. doi:https://doi.org/10.1109/ECC.2015.7330711 Google Scholar[26] Yang S., Mazenc F. and Akella M. R., “Velocity-Free Attitude Stabilization with Measurement Errors,” AAS/AIAA Astrodynamics Specialist Conference, AIAA Paper 2015-0685, 2015. Google Scholar[27] Malisoff M. and Mazenc F., Constructions of Strict Lyapunov Functions, Communications and Control Engineering Series, Springer, New York, 2009. CrossrefGoogle Scholar[28] Mazenc F. and Nesic D., “Lyapunov Functions for Time-Varying Systems Satisfying Generalized Conditions of Matrosov Theorem,” Mathematics of Control, Signals, and Systems, Vol. 19, No. 2, 2007, pp. 151–182. doi:https://doi.org/10.1007/s00498-007-0015-7 MCSYE8 0932-4194 CrossrefGoogle Scholar[29] Mazenc F. and Akella M. R., “Quaternion-Based Stabilization of Attitude Dynamics Subject to Pointwise Delay in the Input,” American Control Conference (ACC) 2014, IEEE Publ., Piscataway, NJ, 2014, pp. 4877–4882. doi:https://doi.org/10.1109/ACC.2014.6858703 Google Scholar[30] Schaub H. and Junkins J. L., Analytical Mechanics of Space Systems, AIAA Education Series, AIAA, Reston, VA, 2003, Chap. 3. LinkGoogle Scholar[31] Seo D. and Akella M. R., “Separation Property for the Rigid-Body Attitude Tracking Control Problem,” Journal of Guidance, Control, and Dynamics, Vol. 30, No. 6, 2007, pp. 1569–1576. doi:https://doi.org/10.2514/1.30296 JGCODS 0731-5090 LinkGoogle Scholar[32] Mortari D. and Akella M. R., “Discrete and Continuous Time Adaptive Angular Velocity Estimators,” 25th AAS/AIAA Space Flight Mechanics Meeting, AIAA Paper 2015-0254, 2015. Google Scholar[33] Khalil H. K. and Grizzle J., Nonlinear Systems, 3rd ed., Prentice–Hall, Upper Saddle River, NJ, 2002, pp. 168–174. Google Scholar[34] Johnston-Lemke B., “High Performance Attitude Determination and Control for Nanosatellites Missions,” Ph.D. Thesis, Univ. of Toronto, Toronto, 2011. Google Scholar[35] Erlank A. O., “Development of CubeStar A CubeSat-Compatible Star Tracker,” Ph.D. Thesis, Stellenbosch Univ., Stellenbosch, South Africa, 2013. Google Scholar[36] McBryde C. R. and Lightsey E. G., “A Star Tracker Design for CubeSats,” 2012 IEEE Aerospace Conference, IEEE Publ., Piscataway, NJ, 2012, pp. 1–14. doi:https://doi.org/10.1109/AERO.2012.6187242 Google Scholar[37] Inamori T., Sako N. and Nakasuka S., “Magnetic Dipole Moment Estimation and Compensation for an Accurate Attitude Control in Nano-Satellite Missions,” Acta Astronautica, Vol. 68, No. 11, 2011, pp. 2038–2046. doi:https://doi.org/10.1016/j.actaastro.2010.10.022 AASTCF 0094-5765 CrossrefGoogle Scholar Previous article Next article FiguresReferencesRelatedDetailsCited byFinite-time Velocity-free Attitude-orbit Integrated Tracking Control for Rigid SpacecraftAn Output Feedback Controller in the Presence of Measurement Error What's Popular Volume 40, Number 12December 2017 CrossmarkInformationCopyright © 2017 by Sungpil Yang, Frederic Mazenc, and Maruthi R. Akella. Published by the American Institute of Aeronautics and Astronautics, Inc., with permission. All requests for copying and permission to reprint should be submitted to CCC at www.copyright.com; employ the ISSN 0731-5090 (print) or 1533-3884 (online) to initiate your request. See also AIAA Rights and Permissions www.aiaa.org/randp. TopicsApplied MathematicsControl TheoryElectromagnetismElementary AlgebraFeedback ControlGeneral PhysicsGeometry FunctionsGuidance, Navigation, and Control SystemsMagnetismMagnetometersSpacecraft Guidance and Control KeywordsQuaternionsFeedback Control SystemAttitude TrackingClosed Loop SystemAttitude StabilizationGyroscopesCubeSatEarthEarth Centered InertialAttitude KinematicsPDF Received13 April 2016Accepted8 June 2017Published online7 August 2017

Referência(s)