BI-MONOTONE BROWNIAN MOTION
2023; World Scientific; Linguagem: Inglês
10.1142/9789811275999_0005
ISSN1793-6306
Autores Tópico(s)Theoretical and Computational Physics
ResumoQP-PQ: Quantum Probability and White Noise AnalysisInfinite Dimensional Analysis, Quantum Probability and Related Topics, pp. 59-76 (2023) No AccessBI-MONOTONE BROWNIAN MOTIONMALTE GERHOLDMALTE GERHOLDInstitut für Mathematik und Informatik, Ernst Moritz Arndt Universität Greifswald, Walther-Rathenau-Straße 47, 17487 Greifswald, Germanywww.math-inf.uni-greifswald.de/index.php/mitarbeiter/282-malte-gerholdhttps://doi.org/10.1142/9789811275999_0005Cited by:0 (Source: Crossref) PreviousNext AboutSectionsPDF/EPUB ToolsAdd to favoritesDownload CitationsTrack CitationsRecommend to Library ShareShare onFacebookTwitterLinked InRedditEmail Abstract: We define bi-monotone independence, prove a bi-monotone central limit theorem and use it to study the distribution of bi-monotone Brownian motion, which is defined as the two-dimensional operator process with monotone and antimonotone Brownian motion as components. Keywords: Noncommutative probabilitybi-monotone independenceLévy processescentral limit theorembi-monotone partitions FiguresReferencesRelatedDetails Recommended Infinite Dimensional Analysis, Quantum Probability and Related Topics Metrics History KeywordsNoncommutative probabilitybi-monotone independenceLévy processescentral limit theorembi-monotone partitionsPDF download
Referência(s)