Artigo Revisado por pares

Load-Velocity Relationship in Variations of the Half-Squat Exercise: Influence of Execution Technique

2017; Lippincott Williams & Wilkins; Volume: 34; Issue: 4 Linguagem: Inglês

10.1519/jsc.0000000000002072

ISSN

1533-4287

Autores

Alejandro Pérez‐Castilla, Amador García‐Ramos, Paulino Padial, Antonio J. Morales‐Artacho, Belén Feriche,

Tópico(s)

Sports injuries and prevention

Resumo

Abstract Pérez-Castilla, A, García-Ramos, A, Padial, P, Morales-Artacho, AJ, and Feriche, B. Load-velocity relationship in variations of the half-squat exercise: influence of execution technique. J Strength Cond Res 34(4): 1024–1031, 2020—Previous studies have revealed that the velocity of the bar can be used to determine the intensity of different resistance training exercises. However, the load-velocity relationship seems to be exercise dependent. This study aimed to compare the load-velocity relationship obtained from 2 variations of the half-squat exercise (traditional vs. ballistic) using 2 execution techniques (eccentric-concentric vs. concentric-only). Twenty men performed a submaximal progressive loading test in 4 half-squat exercises: eccentric-concentric traditional-squat, concentric-only traditional-squat, countermovement jump (i.e., ballistic squat using the eccentric-concentric technique), and squat jump (i.e., ballistic squat using the concentric-only technique). Individual linear regressions were used to estimate the 1 repetition maximum (1RM) for each half-squat exercise. Thereafter, another linear regression was applied to establish the relationship between the relative load (%RM) and mean propulsive velocity (MPV). For all exercises, a strong relationship was observed between %RM and MPV: eccentric-concentric traditional-squat ( R 2 = 0.949), concentric-only traditional-squat ( R 2 = 0.920), countermovement jump ( R 2 = 0.957), and squat jump ( R 2 = 0.879). The velocities associated with each %RM were higher for the ballistic variation and the eccentric-concentric technique than for the traditional variation and concentric-only technique, respectively. Differences in velocity among the half-squat exercises decreased with the increment in the relative load. These results demonstrate that the MPV can be used to predict exercise intensity in the 4 half-squat exercises. However, independent regressions are required for each half-squat exercise because the load-velocity relationship proved to be task specific.

Referência(s)