
Lift Prediction Including Stall, Using Vortex Lattice Method with Kirchhoff-Based Correction
2017; American Institute of Aeronautics and Astronautics; Volume: 55; Issue: 2 Linguagem: Inglês
10.2514/1.c034451
ISSN1533-3868
AutoresCarlos R. dos Santos, Flávio D. Marques,
Tópico(s)Aerodynamics and Fluid Dynamics Research
ResumoNo AccessEngineering NoteLift Prediction Including Stall, Using Vortex Lattice Method with Kirchhoff-Based CorrectionCarlos R. dos Santos and Flávio D. MarquesCarlos R. dos SantosUniversity of São Paulo, 13566-590 São Carlos SP, Brazil*Graduate Student, São Carlos School of Engineering; (Corresponding Author).Search for more papers by this author and Flávio D. MarquesUniversity of São Paulo, 13566-590 São Carlos SP, Brazil†Associate Professor, São Carlos School of Engineering; .Search for more papers by this authorPublished Online:6 Sep 2017https://doi.org/10.2514/1.C034451SectionsRead Now ToolsAdd to favoritesDownload citationTrack citations ShareShare onFacebookTwitterLinked InRedditEmail About References [1] Harper C. W. and Maki R. L., “A Review of the Stall Characteristics of Swept Wings,” NASA Ames Research Center NASA-TN-D-2373, Mountain View, CA, 1964. Google Scholar[2] Petrilli J., Paul R., Gopalarathnam A. and Frink N. T., “A CFD Database for Airfoils and Wings at Post-Stall Angles of Attack,” 31st AIAA Applied Aerodynamics Conference, AIAA Paper 2013-2916, 2013. LinkGoogle Scholar[3] Marchan J. F. and Abtahi A. A., “Aerodynamics of an Aspect Ratio 8 Wing at Low Reynolds Numbers,” Journal of Aircraft, Vol. 22, No. 7, 1985, pp. 628–634. doi:https://doi.org/10.2514/3.45176 LinkGoogle Scholar[4] Martnez-Aranda S., Garca-González A. L., Parras L., Velázquez-Navarro J. F. and del Pino C., “Comparison of the Aerodynamic Characteristics of the NACA0012 Airfoil at Low-to-Moderate Reynolds Numbers for any Aspect Ratio,” International Journal of Aerospace Sciences, Vol. 4, No. 1, 2016, pp. 1–8. Google Scholar[5] Mizoguchi M., Kajikawa Y. and Itoh H., “Static Stall Hysteresis of Low-Aspect-Ratio Wings,” 32nd AIAA Applied Aerodynamics Conference, AIAA Paper 2014-2014, 2014. LinkGoogle Scholar[6] Ananda G. K., Sukumar P. P. and Selig M. S., “Measured Aerodynamic Characteristics of Wings at Low Reynolds Numbers,” Aerospace Science and Technology, Vol. 42, April–May 2015, pp. 392–406. doi:https://doi.org/10.1016/j.ast.2014.11.016 CrossrefGoogle Scholar[7] Rullan J., Gibbs J., Vlachos P. P., Telionis D. P. and Zeiger M. D., “The Aerodynamics of Low-Sweep Trapezoidal Wings,” 43rd Aerospace Sciences Meeting and Exhibit, AIAA Paper 2005-0059, 2005. LinkGoogle Scholar[8] Liu Y. and Hsiao F., “Experimental Investigation on Critical Reynolds Numbers Aerodynamic Properties of Low Aspect Ratios Wings,” Procedia Engineering, Vol. 79, Nov. 2014, pp. 76–85. doi:https://doi.org/10.1016/j.proeng.2014.06.313 CrossrefGoogle Scholar[9] Kaufmann K., Costes M., Richez F., Gardner A. D. and Pape A. L., “Numerical Investigation of Three-Dimensional Static and Dynamic Stall on a Finite Wing,” Journal of the American Helicopter Society, Vol. 60, No. 3, 2015, pp. 1–12. doi:https://doi.org/10.4050/JAHS.60.032004 JHESAK 0002-8711 CrossrefGoogle Scholar[10] Sivells J. C. and Neely R. H., “Method for Calculating Wing Characteristics by Lifting-Line Theory Using Nonlinear Section Lift Data,” NACA-TN-1269, 1947. Google Scholar[11] Anderson J. D., Corda S. and Wie D. M. V., “Numerical Lifting Line Theory Applied to Drooped Leading-Edge Wings Below and Above Stall,” Journal of Aircraft, Vol. 17, No. 12, 1980, pp. 898–904. doi:https://doi.org/10.2514/3.44690 LinkGoogle Scholar[12] Owens D. B., “Weissinger’s Model of the Nonlinear Lifting-Line Method for Aircraft Design,” 36th AIAA Aerospace Sciences Meeting and Exhibit, Aerospace Sciences Meetings, AIAA Paper 1998-0597, 1998. LinkGoogle Scholar[13] Katz J. and Plotkin A., Low-Speed Aerodynamics, Vol. 13, 2nd ed., Cambridge Univ. Press, New York, 2001, pp. 331–368. CrossrefGoogle Scholar[14] Mukherjee R. and Gopalarathnam A., “Poststall Prediction of Multiple-Lifting-Surface Configurations Using a Decambering Approach,” Journal of Aircraft, Vol. 43, No. 3, 2006, pp. 660–668. doi:https://doi.org/10.2514/1.15149 LinkGoogle Scholar[15] Gopalarathnam A. and Segawa H., “Use of Lift Superposition for Improved Computational Efficiency of Wing Post-Stall Prediction,” 26th AIAA Applied Aerodynamics Conference, AIAA Paper 2008-7049, 2008. LinkGoogle Scholar[16] Paul R. C. and Gopalarathnam A., “Iteration Schemes for Rapid Post-Stall Aerodynamic Prediction of Wings Using a Decambering Approach,” International Journal for Numerical Methods in Fluids, Vol. 76, No. 4, 2014, pp. 199–222. doi:https://doi.org/10.1002/fld.v76.4 IJNFDW 0271-2091 CrossrefGoogle Scholar[17] Hosangadi P., Paul R. and Gopalarathnam A., “Improved Stall Prediction for Swept Wings Using Low-Order Aerodynamics,” 33rd AIAA Applied Aerodynamics Conference, AIAA Aviation, AIAA Paper 2015-3159, 2015. LinkGoogle Scholar[18] Kirchhoff G., “Zur Theorie Freier Flüssigkeitsstrahlen,” Journal für die Reine und Angewandte Mathematik, Vol. 1869, No. 70, 1869, pp. 289–298. doi:https://doi.org/10.1515/crll.1869.70.289 CrossrefGoogle Scholar[19] Thwaites B., Incompressible Aerodynamics, Oxford Univ. Press, Oxford, England, U.K., 1960, pp. 168–170. Google Scholar[20] Leishman J. G. and Beddoes T. S., “A Generalised Model for Airfoil Unsteady Aerodynamic Behavior and Dynamic Stall Using the Indicial Method,” Proceedings of the 42nd Annual Forum of the American Helicopter Society, American Helicopter Soc., Fairfax, VA, June 1986, pp. 243–265. Google Scholar[21] Anderson R. F., “The Experimental and Calculated Characteristics of 22 Tapered Wings,” NACA Langley Aeronautical Lab. NACA-TR-627, Langley Field, VA, 1938. Google Scholar[22] Abbott I. H. and Von Doenhoff A. E., Theory of Wing Sections, Including a Summary of Airfoil Data, Dover, New York, 1959, pp. 391–504. Google Scholar[23] Abbott I. H., Von Doenhoff A. E. and Stivers L., “Summary of Airfoil Data,” NACA Langley Aeronautical Lab. Rept. 627, Langley Field, VA, 1945. Google Scholar[24] Leishman J. G. and Crouse G. L., “State-Space Model for Unsteady Airfoil Behavior and Dynamic Stall,” AIAA Paper 1989-1319, 1989. LinkGoogle Scholar Previous article Next article FiguresReferencesRelatedDetailsCited byNonlinear Aerodynamic Model in Dynamic Ground Effect at High Angles of AttackPedro J. Boschetti , Carlos A. Neves and Pedro J. González14 June 2022 | Journal of Aircraft, Vol. 59, No. 6Nonlinear Aerodynamic Model in Dynamic Ground Effect at High Angles of AttackPedro J. Boschetti, Carlos Neves and Pedro J. González Ramirez29 December 2021Gust and Manoeuvre Loads Alleviation Using Lower Surface SpoilerAbdel Darwich29 December 2021Nonlinear aeroelasticity of high-aspect-ratio wings with laminated composite spar6 June 2021 | Journal of the Brazilian Society of Mechanical Sciences and Engineering, Vol. 43, No. 7Low-Order Method for Prediction of Separation and Stall on Unswept WingsPranav Hosangadi and Ashok Gopalarathnam21 December 2020 | Journal of Aircraft, Vol. 58, No. 3Fast and accurate quasi-3D aerodynamic methods for aircraft conceptual design studies2 December 2020 | The Aeronautical Journal, Vol. 125, No. 1286Recent developments in quasi-3D aerodynamic methods for multidisciplinary aircraft conceptual design studiesAerodynamic Modelling of Unmanned Aerial System through Nonlinear Vortex Lattice Method, Computational Fluid Dynamics and Experimental Validation - Application to the UAS-S45 Bàlaam: Part 1.1 March 2020 | INCAS BULLETIN, Vol. 12, No. 1Numerical investigation of the aerodynamics and wake structures of horizontal axis wind turbines by using nonlinear vortex lattice methodRenewable Energy, Vol. 132 What's Popular Volume 55, Number 2March 2018Special Section on Computational and Experimental Aerodynamics and Stability & Control for an Agile UAV CrossmarkInformationCopyright © 2017 by the American Institute of Aeronautics and Astronautics, Inc. All rights reserved. All requests for copying and permission to reprint should be submitted to CCC at www.copyright.com; employ the ISSN 0021-8669 (print) or 1533-3868 (online) to initiate your request. See also AIAA Rights and Permissions www.aiaa.org/randp. TopicsAerodynamic PerformanceAerodynamicsAeronautical EngineeringAeronauticsAircraft DesignAircraft Operations and TechnologyAircraft Wing DesignComputational Fluid DynamicsFinite Element MethodFlow RegimesFluid DynamicsTurbulenceTurbulence ModelsVortex DynamicsWing ConfigurationsWing Planforms KeywordsVortex Lattice MethodLift CoefficientAspect RatioFreestream VelocityVortex RingsInfluence CoefficientsRectangular WingSweep AngleAirfoil ProfilesWing RootAcknowledgmentsThe authors acknowledge the financial support of the São Paulo State Research Foundation FAPESP (grant nos. 2014/21166-7 and 2016/24522-4) and the Brazilian Research Agency CNPq (grant no. 305700/2013-8).PDF Received2 March 2017Accepted11 July 2017Published online6 September 2017
Referência(s)