Impact of carrier localization on recombination in InGaN quantum wells and the efficiency of nitride light-emitting diodes: Insights from theory and numerical simulations
2017; American Institute of Physics; Volume: 111; Issue: 11 Linguagem: Inglês
10.1063/1.5002104
ISSN1520-8842
AutoresC.M. Jones, Chu-Hsiang Teng, Qimin Yan, C. C. Kuo, Emmanouil Kioupakis,
Tópico(s)Ga2O3 and related materials
ResumoWe examine the effect of carrier localization due to random alloy fluctuations on the radiative and Auger recombination rates in InGaN quantum wells as a function of alloy composition, crystal orientation, carrier density, and temperature. Our results show that alloy fluctuations reduce individual transition matrix elements by the separate localization of electrons and holes, but this effect is overcompensated by the additional transitions enabled by translational symmetry breaking and the resulting lack of momentum conservation. Hence, we find that localization increases both radiative and Auger recombination rates, but that Auger recombination rates increase by one order of magnitude more than radiative rates. Furthermore, we demonstrate that localization has an overall detrimental effect on the efficiency-droop and green-gap problems of InGaN LEDs.
Referência(s)