Synthesis, photophysical properties, and computational studies of four-coordinate copper(I) complexes based on benzimidazolylidene N-heterocyclic carbene (NHC) ligands bearing aryl substituents
2017; Elsevier BV; Volume: 1153; Linguagem: Inglês
10.1016/j.molstruc.2017.09.119
ISSN1872-8014
AutoresShengxian Xu, Jinglan Wang, Shaobo Liu, Feng Zhao, Hongying Xia, Yibo Wang,
Tópico(s)Catalytic C–H Functionalization Methods
ResumoThree four-coordinate N-heterocyclic carbene (NHC) copper(I) complexes, [Cu(Ph-BenIm-Py)(POP)]PF6 (1), [Cu(Naph-BenIm-Py)(POP)]PF6 (2), and [Cu(Anthr-BenIm-Py)(POP)]PF6 (3) (Ph-BenIm-Py = 3-benzyl-1-(pyridin-2-yl)-1H-benzimidazolylidene, Naph-BenIm-Py = 3-(naphthalen-2-yl-1-(pyridin-2-yl)-1H- benzimidazolylidene, Anthr-BenIm-Py = 3-(anthracen-9-yl)-1-(pyridin-2-yl)-1H-benzimidazolylidene, and POP = bis[2-diphenylphosphino]-phenyl)ether) have been synthesized and characterized. The different aryl substituents (phenyl, naphthyl, and anthracyl groups) were introduced into NHC ligands and the corresponding photophysical properties of the complexes were systematically investigated. The absorption spectra of all NHCCu(I) complexes show a characteristic feature of metal-to-ligand charge transfer (MLCT) in the lower-energy region. Complex 1 exhibited good photoluminescence (PL) properties companying with the high quantum yields and long excited-state lifetimes, whereas 2 and 3 with naphthyl and anthracyl groups show the low PL efficiency caused by the strong π-π stacking interactions. Density functional theory (DFT) and time dependent density functional theory (TDDFT) calculations were employed to rationalize the photophysical properties of the NHCCu(I) complexes.
Referência(s)