Artigo Acesso aberto Revisado por pares

IAP-Based Cell Sorting Results in Homogeneous Transplantable Dopaminergic Precursor Cells Derived from Human Pluripotent Stem Cells

2017; Elsevier BV; Volume: 9; Issue: 4 Linguagem: Inglês

10.1016/j.stemcr.2017.08.016

ISSN

2213-6711

Autores

Daniela Lehnen, Serena Barral, Tiago Cardoso, Shane Grealish, Andreas Heuer, Andrej Smiyakin, Agnete Kirkeby, Jutta Kollet, Harold Cremer, Malin Parmar, Andreas Bosio, Sebastian Knöbel,

Tópico(s)

Virus-based gene therapy research

Resumo

Human pluripotent stem cell (hPSC)-derived mesencephalic dopaminergic (mesDA) neurons can relieve motor deficits in animal models of Parkinson's disease (PD). Clinical translation of differentiation protocols requires standardization of production procedures, and surface-marker-based cell sorting is considered instrumental for reproducible generation of defined cell products. Here, we demonstrate that integrin-associated protein (IAP) is a cell surface marker suitable for enrichment of hPSC-derived mesDA progenitor cells. Immunomagnetically sorted IAP+ mesDA progenitors showed increased expression of ventral midbrain floor plate markers, lacked expression of pluripotency markers, and differentiated into mature dopaminergic (DA) neurons in vitro. Intrastriatal transplantation of IAP+ cells sorted at day 16 of differentiation in a rat model of PD resulted in functional recovery. Grafts from sorted IAP+ mesDA progenitors were more homogeneous in size and DA neuron density. Thus, we suggest IAP-based sorting for reproducible prospective enrichment of mesDA progenitor cells in clinical cell replacement strategies.

Referência(s)