Artigo Acesso aberto Revisado por pares

Evolution of sequence-specific anti-silencing systems in Arabidopsis

2017; Nature Portfolio; Volume: 8; Issue: 1 Linguagem: Inglês

10.1038/s41467-017-02150-7

ISSN

2041-1723

Autores

Aoi Hosaka, Raku Saito, Kazuya Takashima, Taku Sasaki, Yu Fu, Akira Kawabe, Tasuku Ito, Atsushi Toyoda, Asao Fujiyama, Yoshiaki Tarutani, Tetsuji Kakutani,

Tópico(s)

Plant Molecular Biology Research

Resumo

The arms race between parasitic sequences and their hosts is a major driving force for evolution of gene control systems. Since transposable elements (TEs) are potentially deleterious, eukaryotes silence them by epigenetic mechanisms such as DNA methylation. Little is known about how TEs counteract silencing to propagate during evolution. Here, we report behavior of sequence-specific anti-silencing proteins used by Arabidopsis TEs and evolution of those proteins and their target sequences. We show that VANC, a TE-encoded anti-silencing protein, induces extensive DNA methylation loss throughout TEs. Related VANC proteins have evolved to hypomethylate TEs of completely different spectra. Targets for VANC proteins often form tandem repeats, which vary considerably between related TEs. We propose that evolution of VANC proteins and their targets allow propagation of TEs while causing minimal host damage. Our findings provide insight into the evolutionary dynamics of these apparently "selfish" sequences. They also provide potential tools to edit epigenomes in a sequence-specific manner.

Referência(s)