Nature of the singlet and triplet excitations mediating thermally activated delayed fluorescence
2017; American Physical Society; Volume: 1; Issue: 7 Linguagem: Inglês
10.1103/physrevmaterials.1.075602
ISSN2476-0455
AutoresYoann Olivier, Brett Yurash, Luca Muccioli, Gabriele D’Avino, Oleksandr V. Mikhnenko, J. C. Sancho-García, Chihaya Adachi, Thuc‐Quyen Nguyen, David Beljonne,
Tópico(s)Photochemistry and Electron Transfer Studies
ResumoDespite significant efforts, a complete mechanistic understanding of thermally activated delayed fluorescence (TADF) materials has not yet been fully uncovered. Part of the complexity arises from the apparent dichotomy between the need for close energy resonance and for a significant spin-orbit coupling between alike charge-transfer singlet and triplet excitations. Here we show, in the case of reference carbazole derivatives, that this dichotomy can be resolved in a fully atomistic model accounting for thermal fluctuations of the molecular conformations and microscopic electronic polarization effects in amorphous films. These effects yield electronic excitations with a dynamically mixed charge-transfer and localized character, resulting in thermally averaged singlet-triplet energy differences and interconversion rates in excellent agreement with careful spectroscopic studies.
Referência(s)