Topological insulator laser: Experiments
2018; American Association for the Advancement of Science; Volume: 359; Issue: 6381 Linguagem: Inglês
10.1126/science.aar4005
ISSN1095-9203
AutoresMiguel A. Bandres, Steffen Wittek, Gal Harari, Midya Parto, Jinhan Ren, Mordechai Segev, Demetrios N. Christodoulides, Mercedeh Khajavikhan,
Tópico(s)Cold Atom Physics and Bose-Einstein Condensates
ResumoPhysical systems exhibiting topological invariants are naturally endowed with robustness against perturbations, as manifested in topological insulators-materials exhibiting robust electron transport, immune from scattering by defects and disorder. Recent years have witnessed intense efforts toward exploiting these phenomena in photonics. Here we demonstrate a nonmagnetic topological insulator laser system exhibiting topologically protected transport in the cavity. Its topological properties give rise to single-mode lasing, robustness against defects, and considerably higher slope efficiencies compared to the topologically trivial counterparts. We further exploit the properties of active topological platforms by assembling the system from S-chiral microresonators, enforcing predetermined unidirectional lasing without magnetic fields. This work paves the way toward active topological devices with exciting properties and functionalities.
Referência(s)