Artigo Acesso aberto

WiFi-Based Human Identification via Convex Tensor Shapelet Learning

2018; Association for the Advancement of Artificial Intelligence; Volume: 32; Issue: 1 Linguagem: Inglês

10.1609/aaai.v32i1.11497

ISSN

2374-3468

Autores

Han Zou, Yuxun Zhou, Jianfei Yang, Weixi Gu, Lihua Xie, Costas J. Spanos,

Tópico(s)

Energy Efficient Wireless Sensor Networks

Resumo

We propose AutoID, a human identification system that leverages the measurements from existing WiFi-enabled Internet of Things (IoT) devices and produces the identity estimation via a novel sparse representation learning technique. The key idea is to use the unique fine-grained gait patterns of each person revealed from the WiFi Channel State Information (CSI) measurements, technically referred to as shapelet signatures, as the "fingerprint" for human identification. For this purpose, a novel OpenWrt-based IoT platform is designed to collect CSI data from commercial IoT devices. More importantly, we propose a new optimization-based shapelet learning framework for tensors, namely Convex Clustered Concurrent Shapelet Learning (C3SL), which formulates the learning problem as a convex optimization. The global solution of C3SL can be obtained efficiently with a generalized gradient-based algorithm, and the three concurrent regularization terms reveal the inter-dependence and the clustering effect of the CSI tensor data. Extensive experiments are conducted in multiple real-world indoor environments, showing that AutoID achieves an average human identification accuracy of 91% from a group of 20 people. As a combination of novel sensing and learning platform, AutoID attains substantial progress towards a more accurate, cost-effective and sustainable human identification system for pervasive implementations.

Referência(s)