Editorial Revisado por pares

How Combined Multicomparative Proteomic Approaches can Improve the Understanding of Quinolone Resistance in Salmonella Typhimurium

2018; Future Medicine; Volume: 13; Issue: 4 Linguagem: Inglês

10.2217/fmb-2017-0250

ISSN

1746-0921

Autores

Susana Correia, Michel Hébraud, Patrícia Poeta, José Luís Capelo, Gilberto Igrejas,

Tópico(s)

Bacteriophages and microbial interactions

Resumo

Future MicrobiologyVol. 13, No. 4 EditorialHow combined multicomparative proteomic approaches can improve the understanding of quinolone resistance in Salmonella TyphimuriumSusana Correia, Michel Hébraud, Patrícia Poeta, José L Capelo & Gilberto IgrejasSusana Correia Functional Genomics & Proteomics Unit, University of Trás-os-Montes & Alto Douro, Vila Real, Portugal Department of Genetics & Biotechnology, University of Trás-os-Montes & Alto Douro, Vila Real, Portugal Veterinary Science Department, University of Trás-os-Montes & Alto Douro, Vila Real, Portugal LAQV-REQUIMTE, Faculty of Science & Technology, Nova University of Lisbon, Caparica, Portugal, Michel Hébraud UMR454 MEDiS, Institut National de la Recherche Agronomique (INRA), Centre Auvergne-Rhône-Alpes, site de Theix, Saint-Genès Champanelle, France Plate-Forme d'Exploration du Métabolisme composante protéomique, UR370 QuaPA, Institut National de la Recherche Agronomique (INRA), Centre Auvergne-Rhône-Alpes, site de Theix, Saint-Genès Champanelle, France, Patrícia Poeta Veterinary Science Department, University of Trás-os-Montes & Alto Douro, Vila Real, Portugal LAQV-REQUIMTE, Faculty of Science & Technology, Nova University of Lisbon, Caparica, Portugal, José L Capelo LAQV-REQUIMTE, Faculty of Science & Technology, Nova University of Lisbon, Caparica, Portugal ProteoMass Scientific Society, Faculty of Sciences & Technology, Campus de Caparica, Caparica, Portugal & Gilberto Igrejas*Author for correspondence: Tel.: +351 259 350 530; Fax: +351 259 350 480; E-mail Address: gigrejas@utad.pt Functional Genomics & Proteomics Unit, University of Trás-os-Montes & Alto Douro, Vila Real, Portugal Department of Genetics & Biotechnology, University of Trás-os-Montes & Alto Douro, Vila Real, Portugal LAQV-REQUIMTE, Faculty of Science & Technology, Nova University of Lisbon, Caparica, PortugalPublished Online:21 Feb 2018https://doi.org/10.2217/fmb-2017-0250AboutSectionsView ArticleView Full TextPDF/EPUB ToolsAdd to favoritesDownload CitationsTrack CitationsPermissionsReprints ShareShare onFacebookTwitterLinkedInReddit View articleKeywords: antimicrobial resistancecomparative subproteomicsquinolone resistanceSalmonella Typhimurium DT104References1 Antimicrobial resistance: global report on surveillance. WHO (2014). www.who.int/drugresistance/documents/surveillancereport/en/ Google Scholar2 Prioritization of pathogens to guide discovery, research and development of new antibiotics for drug-resistant bacterial infections, including tuberculosis. WHO (2017). www.who.int/medicines/areas/rational_use/prioritization-of-pathogens/en/ Google Scholar3 Helms M, Ethelberg S, Molbak K. International Salmonella Typhimurium DT104 infections, 1992–2001. Emerg. Infect. Dis. 11(6), 859–867 (2005).Crossref, Medline, Google Scholar4 Vranakis I, Goniotakis I, Psaroulaki A et al. Proteome studies of bacterial antibiotic resistance mechanisms. J. Proteomics 97, 88–99 (2014).Crossref, Medline, CAS, Google Scholar5 Correia S, Poeta P, Hebraud M, Capelo JL, Igrejas G. Mechanisms of quinolone action and resistance: where do we stand? J. Med. Microbiol. 66(5), 551–559 (2017).Crossref, Medline, CAS, Google Scholar6 Suzuki S, Horinouchi T, Furusawa C. Prediction of antibiotic resistance by gene expression profiles. Nat. Commun. 5, 5792 (2014).Crossref, Medline, CAS, Google Scholar7 Da Costa JP, Carvalhais V, Ferreira R et al. Proteome signatures-how are they obtained and what do they teach us? Appl. Microbiol. Biotechnol. 99(18), 7417–7431 (2015).Crossref, Medline, Google Scholar8 Perez-Llarena FJ, Bou G. Proteomics as a tool for studying bacterial virulence and antimicrobial resistance. Front. Microbiol. 7, 410 (2016).Crossref, Medline, Google Scholar9 Burchmore R. Mapping pathways to drug resistance with proteomics. Expert Rev. Proteomics 11(1), 1–3 (2014).Crossref, Medline, CAS, Google Scholar10 Lima TB, Pinto MF, Ribeiro SM et al. Bacterial resistance mechanism: what proteomics can elucidate. FASEB J. 27(4), 1291–1303 (2013).Crossref, Medline, CAS, Google Scholar11 Park AJ, Krieger JR, Khursigara CM. Survival proteomes: the emerging proteotype of antimicrobial resistance. FEMS Microbiol. Rev. 40(3), 323–342 (2016).Crossref, Medline, CAS, Google Scholar12 Hébraud M. Analysis of Listeria monocytogenes subproteomes. Methods Mol. Biol. 1157 109–128 (2014).Crossref, Medline, CAS, Google Scholar13 Correia S, Hebraud M, Chafsey I et al. Impacts of experimentally induced and clinically acquired quinolone resistance on the membrane and intracellular subproteomes of Salmonella Typhimurium DT104B. J. Proteomics 145, 46–59 (2016).Crossref, Medline, CAS, Google Scholar14 De Toro M, Rojo-Bezares B, Vinue L, Undabeitia E, Torres C, Saenz Y. In vivo selection of aac(6')-Ib-cr and mutations in the gyrA gene in a clinical qnrS1-positive Salmonella enterica serovar Typhimurium DT104B strain recovered after fluoroquinolone treatment. J. Antimicrob. Chemother. 65(9), 1945–1949 (2010).Crossref, Medline, CAS, Google Scholar15 Correia S, Hebraud M, Chafsey I et al. Comparative subproteomic analysis of clinically acquired fluoroquinolone resistance and ciprofloxacin stress in Salmonella Typhimurium DT104B. Proteomics Clin. Appl. 11(7–8), 1600107 (2017).Crossref, Google Scholar16 Correia S, Hebraud M, Chafsey I et al. Subproteomic signature comparison of in vitro selected fluoroquinolone resistance and ciprofloxacin stress in Salmonella Typhimurium DT104B. Expert Rev. Proteomics 14(10), 1–21 (2017).Crossref, Medline, Google Scholar17 Bhargava P, Collins JJ. Boosting bacterial metabolism to combat antibiotic resistance. Cell Metab. 21(2), 154–155 (2015).Crossref, Medline, CAS, Google Scholar18 Martinez JL, Rojo F. Metabolic regulation of antibiotic resistance. FEMS Microbiol. Rev. 35(5), 768–789 (2011).Crossref, Medline, CAS, Google Scholar19 Poole K. Bacterial stress responses as determinants of antimicrobial resistance. J. Antimicrob. Chemother. 67(9), 2069–2089 (2012).Crossref, Medline, CAS, Google Scholar20 Dorr T, Lewis K, Vulic M. SOS response induces persistence to fluoroquinolones in Escherichia coli. PLoS Genet. 5(12), e1000760 (2009).Crossref, Medline, Google ScholarFiguresReferencesRelatedDetailsCited ByQuantitative proteomics reveals the molecular mechanism of Aeromonas hydrophila in enoxacin stressJournal of Proteomics, Vol. 211Antimicrobial Resistance of Common Zoonotic Bacteria in the Food Chain: An Emerging Threat2 May 2019 Vol. 13, No. 4 Follow us on social media for the latest updates Metrics Downloaded 89 times History Received 25 October 2017 Accepted 2 November 2017 Published online 21 February 2018 Published in print March 2018 Information© 2018 Future Medicine LtdKeywordsantimicrobial resistancecomparative subproteomicsquinolone resistance Salmonella Typhimurium DT104Financial & competing interests disclosureS Correia was financially supported by a PhD studentship (SFRH/BD/75160/2010), granted in the QREN-POPH framework by the Portuguese Foundation for Science and Technology and co-funded by the European Social Fund and the Ministry of Education and Science. The authors have no other relevant affiliations or financial involvement with any organization or entity with a financial interest in or financial conflict with the subject matter or materials discussed in the manuscript apart from those disclosed.No writing assistance was utilized in the production of this manuscript.PDF download

Referência(s)