Artigo Revisado por pares

Precise Attitude Control of Multirotary-Joint Solar-Power Satellite

2018; American Institute of Aeronautics and Astronautics; Volume: 41; Issue: 6 Linguagem: Inglês

10.2514/1.g003309

ISSN

1533-3884

Autores

Qingjun Li, Zichen Deng, Kai Zhang, Bo Wang,

Tópico(s)

Satellite Communication Systems

Resumo

No AccessEngineering NotePrecise Attitude Control of Multirotary-Joint Solar-Power SatelliteQingjun Li, Zichen Deng, Kai Zhang and Bo WangQingjun LiNorthwestern Polytechnical University, 710072 Xi'an, People's Republic of China, Zichen DengNorthwestern Polytechnical University, 710072 Xi'an, People's Republic of China, Kai ZhangNorthwestern Polytechnical University, 710072 Xi'an, People's Republic of China and Bo WangChina Academy of Space Technology, Beijing 100094, People's Republic of ChinaPublished Online:30 Jan 2018https://doi.org/10.2514/1.G003309SectionsRead Now ToolsAdd to favoritesDownload citationTrack citations ShareShare onFacebookTwitterLinked InRedditEmail About References [1] Glaser P. E., "Power from the Sun: Its Future," Science, Vol. 162, No. 3856, 1968, pp. 857–861. doi:https://doi.org/10.1126/science.162.3856.857 SCIEAS 0036-8075 CrossrefGoogle Scholar[2] Glaser P. E., "An Overview of the Solar Power Satellite Option," IEEE Transactions on Microwave Theory and Techniques, Vol. 40, No. 6, 1992, pp. 1230–1238. doi:https://doi.org/10.1109/22.141356 IETMAB 0018-9480 CrossrefGoogle Scholar[3] Mankins J. C., "New Directions for Space Solar Power," Acta Astronautica, Vol. 65, No. 1, 2009, pp. 146–156. doi:https://doi.org/10.1016/j.actaastro.2009.01.032 AASTCF 0094-5765 CrossrefGoogle Scholar[4] Carrington C., Fikes J., Gerry M., Perkinson D., Feingold H. and Olds J., "The Abacus/Reflector and Integrated Symmetrical Concentrator-Concepts for Space Solar Power Collection and Transmission," 35th Intersociety Energy Conversion Engineering Conference and Exhibit, AIAA Paper 2000-3067, 2000. doi:https://doi.org/10.2514/6.2000-3067 LinkGoogle Scholar[5] Mori M., Nagayama H., Saito Y. and Matsumoto H., "Summary of Studies on Space Solar Power Systems of the National Space Development Agency of Japan," Acta Astronautica, Vol. 54, No. 5, 2004, pp. 337–345. doi:https://doi.org/10.1016/S0094-5765(03)00033-X AASTCF 0094-5765 CrossrefGoogle Scholar[6] Sasaki S., Tanaka K., Higuchi K., Okuizumi N., Kawasaki S., Shinohara N., Senda K. and Ishimura K., "A New Concept of Solar Power Satellite: Tethered-SPS," Acta Astronautica, Vol. 60, No. 3, 2007, pp. 153–165. doi:https://doi.org/10.1016/j.actaastro.2006.07.010 AASTCF 0094-5765 CrossrefGoogle Scholar[7] Seboldt W., Klimke M., Leipold M. and Hanowski N., "European Sail Tower SPS Concept," Acta Astronautica, Vol. 48, No. 5, 2001, pp. 785–792. doi:https://doi.org/10.1016/S0094-5765(01)00046-7 AASTCF 0094-5765 CrossrefGoogle Scholar[8] Hou X., Li M., Niu L., Zhou L., Chen Y., Cheng Z. and Jia H., "Multi-Rotary Joints SPS," Online Journal of Space Communication, Vol. 2016, No. 18, 2016, https://spacejournal.ohio.edu/issue18/cast.html [cited 22 Jan. 2018]. Google Scholar[9] Hou X., Wang L., Zhang X. and Zhou L., "Concept Design on Multi-Rotary Joints SPS," Journal of Astronautics, Vol. 11, No. 11, Nov. 2015, pp. 1332–1338. doi:https://doi.org/10.3873/j.issn.1000-1328.2015.11.016 Google Scholar[10] Yang C., Hou X. and Wang L., "Thermal Design, Analysis and Comparison on Three Concepts of Space Solar Power Satellite," Acta Astronautica, Vol. 137, Aug. 2017, pp. 382–402. doi:https://doi.org/10.1016/j.actaastro.2017.05.004 AASTCF 0094-5765 CrossrefGoogle Scholar[11] Wie B. and Roithmayr C. M., "Attitude and Orbit Control of a Very Large Geostationary Solar Power Satellite," Journal of Guidance, Control, and Dynamics, Vol. 28, No. 3, 2005, pp. 439–451. doi:https://doi.org/10.2514/1.6813 JGCODS 0731-5090 LinkGoogle Scholar[12] Wie B. and Roithmayr C. M., "Integrated Orbit, Attitude, and Structural Control Systems Design for Space Solar Power Satellites," NASA Rept. TM-2001-210854, 2001. Google Scholar[13] Liu Y., Wu S., Zhang K. and Wu Z., "Parametrical Excitation Model for Rigid–Flexible Coupling System of Solar Power Satellite," Journal of Guidance, Control, and Dynamics, Vol. 40, No. 10, 2017, pp. 2674–2681. doi:https://doi.org/10.2514/1.G002739 JGCODS 0731-5090 LinkGoogle Scholar[14] Wu S., Zhang K., Peng H., Wu Z. and Radice G., "Robust Optimal Sun-Pointing Control of a Large Solar Power Satellite," Acta Astronautica, Vol. 127, Nov. 2016, pp. 226–234. doi:https://doi.org/10.1016/j.actaastro.2016.05.019 AASTCF 0094-5765 CrossrefGoogle Scholar[15] Liu Y., Wu S., Zhang K. and Wu Z., "Gravitational Orbit–Attitude Coupling Dynamics of a Large Solar Power Satellite," Aerospace Science and Technology, Vol. 62, March 2017, pp. 46–54. doi:https://doi.org/10.1016/j.ast.2016.11.030 CrossrefGoogle Scholar[16] Ishimura K. and Higuchi K., "Coupling Between Structural Deformation and Attitude Motion of Large Planar Space Structures Suspended by Multi-Tethers," Acta Astronautica, Vol. 60, No. 8, 2007, pp. 691–710. doi:https://doi.org/10.1016/j.actaastro.2006.10.002 AASTCF 0094-5765 CrossrefGoogle Scholar[17] Senda K. and Goto T., "Dynamics Simulation of Flexible Solar Power Satellite Using Geomagnetic Control," Proceedings of the 24th Workshop on JAXA Astrodynamics and Flight Mechanics, JAXA, 2014, pp. 215–219. Google Scholar[18] Arimoto S., Kawamura S. and Miyazaki F., "Bettering Operation of Robots by Learning," Journal of Robotic Systems, Vol. 1, No. 2, 1984, pp. 123–140. doi:https://doi.org/10.1002/(ISSN)1097-4563 JRSYDB 0741-2223 CrossrefGoogle Scholar[19] Ahn H. S., Chen Y. Q. and Moore K. L., "Iterative Learning Control: Brief Survey and Categorization," IEEE Transactions on Systems, Man, and Cybernetics, Part C: Applications and Reviews, Vol. 37, No. 6, 2007, pp. 1099–1121. doi:https://doi.org/10.1109/TSMCC.2007.905759 CrossrefGoogle Scholar[20] Moore K. L., Dahleh M. and Bhattacharyya S. P., "Iterative Learning Control: A Survey and New Results," Journal of Robotic Systems, Vol. 9, No. 5, 1992, pp. 563–594. doi:https://doi.org/10.1002/rob.v9:5 JRSYDB 0741-2223 CrossrefGoogle Scholar[21] Wang D., "On D-Type and P-Type ILC Designs and Anticipatory Approach," International Journal of Control, Vol. 73, No. 10, 2000, pp. 890–901. doi:https://doi.org/10.1080/002071700405879 IJCOAZ 0020-7179 CrossrefGoogle Scholar[22] Ge X., Stein J. L. and Ersal T., "Frequency-Domain Analysis of Robust Monotonic Convergence of Norm-Optimal Iterative Learning Control," IEEE Transactions on Control Systems Technology, Vol. PP, No. 99, 2017, pp. 1–15. doi:https://doi.org/10.1109/TCST.2017.2692729 IETTE2 1063-6536 CrossrefGoogle Scholar[23] Wu B., Poh E. K., Wang D. and Xu G., "Satellite Formation Keeping via Real-Time Optimal Control and Iterative Learning Control," Proceedings of the 2009 IEEE Aerospace Conference, IEEE Publ., Piscataway, NJ, 2009, pp. 1–0. doi:https://doi.org/10.1109/AERO.2009.4839333 Google Scholar[24] Ahn H. S., Moore K. L. and Chen Y., "Trajectory-Keeping in Satellite Formation Flying via Robust Periodic Learning Control," International Journal of Robust and Nonlinear Control, Vol. 20, No. 14, 2010, pp. 1655–1666. doi:https://doi.org/10.1002/rnc.1538 CrossrefGoogle Scholar[25] Wu B., Wang D. and Poh E. K., "High Precision Satellite Attitude Tracking Control via Iterative Learning Control," Journal of Guidance, Control, and Dynamics, Vol. 38, No. 3, 2015, pp. 528–534. doi:https://doi.org/10.2514/1.G000497 JGCODS 0731-5090 LinkGoogle Scholar[26] Wu Q. and Saif M., "Robust Fault Diagnosis of a Satellite System Using a Learning Strategy and Second Order Sliding Mode Observer," IEEE Systems Journal, Vol. 4, No. 1, 2010, pp. 112–121. doi:https://doi.org/10.1109/JSYST.2010.2043786 CrossrefGoogle Scholar[27] Wu Q. and Saif M., "Robust Fault Detection and Diagnosis in a Class of Nonlinear Systems Using a Neural Sliding Mode Observer," International Journal of Systems Science, Vol. 38, No. 11, 2007, pp. 881–899. doi:https://doi.org/10.1080/00207720701628889 IJSYA9 0020-7721 CrossrefGoogle Scholar[28] Yen J. Y., Yeh Y. C., Peng Y. H. and Lee J. F., "Application of the Continuous No-Reset Switching Iterative Learning Control on a Novel Optical Scanning System," Mechatronics, Vol. 19, No. 1, 2009, pp. 65–75. doi:https://doi.org/10.1016/j.mechatronics.2008.06.010 MECHER 0957-4158 CrossrefGoogle Scholar[29] de Jalón J. G., "Twenty-Five Years of Natural Coordinates," Multibody System Dynamics, Vol. 18, No. 1, 2007, pp. 15–33. doi:https://doi.org/10.1007/s11044-007-9068-0 CrossrefGoogle Scholar[30] Leyendecker S., Betsch P. and Steinmann P., "Energy-Conserving Integration of Constrained Hamiltonian Systems—A Comparison of Approaches," Computational Mechanics, Vol. 33, No. 3, 2004, pp. 174–185. doi:https://doi.org/10.1007/s00466-003-0516-2 CMADEJ CrossrefGoogle Scholar[31] Markley F. L. and Crassidis J. L., Fundamentals of Spacecraft Attitude Determination and Control, Springer, New York, 2014, Chaps. 3, 4, 9. doi:https://doi.org/10.1007/978-1-4939-0802-8 Google Scholar[32] Cai Z., Li X. and Zhou H., "Nonlinear Dynamics of a Rotating Triangular Tethered Satellite Formation Near Libration Points," Aerospace Science and Technology, Vol. 42, May 2015, pp. 384–391. doi:https://doi.org/10.1016/j.ast.2015.02.005 CrossrefGoogle Scholar[33] McNally I., Scheeres D. and Radice G., "Locating Large Solar Power Satellites in the Geosynchronous Laplace Plane," Journal of Guidance, Control, and Dynamics, Vol. 38, No. 3, 2015, pp. 489–505. doi:https://doi.org/10.2514/1.G000609 JGCODS 0731-5090 LinkGoogle Scholar[34] Yadav A. K. and Gaur P., "Improved Self-Tuning Fuzzy Proportional-Integral-Derivative Versus Fuzzy-Adaptive Proportional-Integral-Derivative for Speed Control of Nonlinear Hybrid Electric Vehicles," Journal of Computational and Nonlinear Dynamics, Vol. 11, No. 6, 2016, Paper 061013. doi:https://doi.org/10.1115/1.4033685 JCNDDM 1555-1415 CrossrefGoogle Scholar[35] Oh S. K. and Lee J. M., "Stochastic Iterative Learning Control for Discrete Linear Time-Invariant System with Batch-Varying Reference Trajectories," Journal of Process Control, Vol. 36, Dec. 2015, pp. 64–78. doi:https://doi.org/10.1016/j.jprocont.2015.09.008 JPCOEO 0959-1524 CrossrefGoogle Scholar[36] Huang L., Ding H. and Fang Y., "Suppress the Accumulated Effect of Channel Noise on ILC Systems over Wireless Channels," Proceedings of the 2016 Chinese Control and Decision Conference (CCDC), IEEE, 2016, pp. 7013–7018. doi:https://doi.org/10.1109/CCDC.2016.7532261 Google Scholar[37] Wang Y. and Xu S., "Gravitational Orbit-Rotation Coupling of a Rigid Satellite Around a Spheroid Planet," Journal of Aerospace Engineering, Vol. 27, No. 1, 2014, pp. 140–150. doi:https://doi.org/10.1061/(ASCE)AS.1943-5525.0000222 JAEEEZ 0893-1321 CrossrefGoogle Scholar Previous article Next article FiguresReferencesRelatedDetailsCited byA review of dynamic analysis on space solar power station13 July 2022 | Astrodynamics, Vol. 7, No. 2Chattering-free adaptive iterative learning for attitude tracking control of uncertain spacecraftAutomatica, Vol. 151Analysis of the Influence of the Skin Effect on the Efficiency and Power of the Receiver in the Periodic WPT System17 February 2023 | Energies, Vol. 16, No. 4Recursive identification of inertia tensor parameters of space solar power satellite based on distributed placement of attitude sensorsAerospace Science and Technology, Vol. 130Angular Trajectory Design for MR-SPS Using Bezier Shaping Approach20 September 2022 | Aerospace, Vol. 9, No. 10Time-varying frequency parameter identification of space solar power satellites based on an improved recursive subspace algorithm and optimal sensor placementAerospace Science and Technology, Vol. 128Switched iterative learning attitude and structural control for solar power satellitesActa Astronautica, Vol. 182Multibody dynamics and robust attitude control of a MW-level solar power satelliteAerospace Science and Technology, Vol. 111Closed-Loop, Exact-Time, Minimum-Energy Attitude Control with Analytic Gain SelectionYuanzhuo Geng, Chuanjiang Li, James D. Biggs and Yanning Guo27 July 2020 | Journal of Guidance, Control, and Dynamics, Vol. 43, No. 11Deep learning-based inertia tensor identification of the combined spacecraft7 February 2020 | Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, Vol. 234, No. 7Attitude control of space solar power satellite with large range of relative motion among subsystemsAerospace Science and Technology, Vol. 100Power-Optimal Guidance for Planar Space Solar Power SatellitesMichael A. Marshall, Ashish Goel and Sergio Pellegrino24 December 2019 | Journal of Guidance, Control, and Dynamics, Vol. 43, No. 3Robust Enhanced Control Strategy of a Solar Power Satellite Using Multiple SensorsKaiming Zhang, Shunan Wu and Zhigang Wu25 October 2019 | Journal of Guidance, Control, and Dynamics, Vol. 43, No. 2Gravity-Gradient-Induced Transverse Deformations and Vibrations of a Sun-Facing BeamQingjun Li, Tongtong Sun, Jihui Li and Zichen Deng5 October 2019 | AIAA Journal, Vol. 57, No. 12Optimal Attitude Sensors Placement for a Solar Power Satellite Considering Control–Structure InteractionKaiming Zhang, Shunan Wu, Yuliang Liu and Zhigang Wu5 August 2019 | AIAA Journal, Vol. 57, No. 10Coordinated Orbit–Attitude–Vibration Control of a Sun-Facing Solar Power SatelliteQingjun Li and Zichen Deng25 April 2019 | Journal of Guidance, Control, and Dynamics, Vol. 42, No. 8Free Angular-Positioning Wireless Power Transfer Using a Spherical Joint14 December 2018 | Energies, Vol. 11, No. 12Unified Modeling Method for Large Space Structures Using Absolute Nodal CoordinateQingjun Li, Zichen Deng, Kai Zhang and He Huang14 September 2018 | AIAA Journal, Vol. 56, No. 10 What's Popular Volume 41, Number 6June 2018 CrossmarkInformationCopyright © 2018 by the American Institute of Aeronautics and Astronautics, Inc. All rights reserved. All requests for copying and permission to reprint should be submitted to CCC at www.copyright.com; employ the ISSN 0731-5090 (print) or 1533-3884 (online) to initiate your request. See also AIAA Rights and Permissions www.aiaa.org/randp. TopicsAerospace SciencesAstrodynamicsAstronauticsAttitude ControlInternational Space StationSatellitesSpace StationsSpace Systems and VehiclesSpacecraft Attitude ControlSpacecrafts KeywordsAttitude StabilizationSatellite Formation FlyingProportional Integral DerivativeEarthAttitude and Orbit Control SystemsEuler AnglesFeedback ControlStructural VibrationSolar RadiationInternational Space StationAcknowledgmentsThis work is supported by the National Natural Science Foundation of China (11432010, 11502202) and the Innovation Foundation for Doctor Dissertation of Northwestern Polytechnical University (CX201615). The authors are grateful to Shunan Wu (Dalian University of Technology) for his useful suggestions on this Note.PDF Received5 September 2017Accepted21 December 2017Published online30 January 2018

Referência(s)