Matching material and cellular timescales maximizes cell spreading on viscoelastic substrates
2018; National Academy of Sciences; Volume: 115; Issue: 12 Linguagem: Inglês
10.1073/pnas.1716620115
ISSN1091-6490
AutoresZe Gong, Spencer E. Szczesny, Steven R. Caliari, Elisabeth E. Charrier, Ovijit Chaudhuri, Xuan Cao, Yuan Lin, Robert L. Mauck, Paul A. Janmey, Jason A. Burdick, Vivek B. Shenoy,
Tópico(s)Force Microscopy Techniques and Applications
ResumoSignificance It is well known that cell proliferation, differentiation, and migration depend strongly on the mechanical stiffness of the extracellular matrix (ECM). Natural ECMs also exhibit dissipative (i.e., plastic, viscoelastic) properties, which can modulate cellular behavior. However, to fully utilize this information in bioengineering applications, a systematic understanding of the role of substrate viscosity on cell function is needed. Using combined theoretical and experimental approaches, we demonstrated that viscous dissipation can be as important as elasticity in determining cell response. Specifically, we found that intermediate viscosity maximizes cell spreading on soft substrates, while cell spreading is independent of viscosity on stiff substrates. This information can now be used to design dissipative biomaterials for optimal control of cell behavior.
Referência(s)