A multiplatform strategy for the discovery of conventional monoclonal antibodies that inhibit the voltage-gated potassium channel Kv1.3
2018; Landes Bioscience; Volume: 10; Issue: 4 Linguagem: Inglês
10.1080/19420862.2018.1445451
ISSN1942-0870
AutoresJanna Bednenko, Rian Harriman, Lore Mariën, Hai M. Nguyen, Alka Agrawal, Ashot Papoyan, Yelena Bisharyan, Joanna Cardarelli, Donna Cassidy-Hanley, Ted Clark, Darlene Pedersen, Yasmina Abdiche, William Harriman, Bas van der Woning, Hans de Haard, Ellen J. Collarini, Heike Wulff, Paul A. Colussi,
Tópico(s)Nicotinic Acetylcholine Receptors Study
ResumoIdentifying monoclonal antibodies that block human voltage-gated ion channels (VGICs) is a challenging endeavor exacerbated by difficulties in producing recombinant ion channel proteins in amounts that support drug discovery programs. We have developed a general strategy to address this challenge by combining high-level expression of recombinant VGICs in Tetrahymena thermophila with immunization of phylogenetically diverse species and unique screening tools that allow deep-mining for antibodies that could potentially bind functionally important regions of the protein. Using this approach, we targeted human Kv1.3, a voltage-gated potassium channel widely recognized as a therapeutic target for the treatment of a variety of T-cell mediated autoimmune diseases. Recombinant Kv1.3 was used to generate and recover 69 full-length anti-Kv1.3 mAbs from immunized chickens and llamas, of which 10 were able to inhibit Kv1.3 current. Select antibodies were shown to be potent (IC50<10 nM) and specific for Kv1.3 over related Kv1 family members, hERG and hNav1.5.
Referência(s)