Artigo Acesso aberto Revisado por pares

Fish sarcoplasmic proteins as a high value marine material for wound dressing applications

2018; Elsevier BV; Volume: 167; Linguagem: Inglês

10.1016/j.colsurfb.2018.04.002

ISSN

1873-4367

Autores

Sara F. Vieira, Albina R. Franco, Emanuel M. Fernandes, Sara Amorim, Helena Ferreira, Ricardo A. Pires, Rui L. Reis, Albino Martins, Nuno M. Neves,

Tópico(s)

biodegradable polymer synthesis and properties

Resumo

Fish sarcoplasmic proteins (FSP) constitute around 25–30% of the total fish muscle protein. As the FSP are water soluble, FSP were isolated from fresh cod (Gadus morhua) by centrifugation. By SDS-PAGE, it was possible to determine the composition of FSP extracts (FSP-E). The FSP-E undergo denaturation at 44.12 ± 2.34° C, as characterized by differential scanning calorimetry thermograms (DSC). The secondary structure of FSP-E is mainly composed by α-helix structure, as determined by circular dichroism. The cytocompatibility of FSP-E, at concentrations ranging from 5 to 20 mg/mL, was investigated. Concentrations lower than 10 mg/mL have no cytotoxicity cultures of fibroblasts over 72 h. Further on, FSP membranes (FSP-M) were produced by spin coating to evaluate its properties. FSP-M shown having uniform surface as analyzed by Scanning Electron Microscopy (SEM). The relative amount of α-helix structures is higher when compared with the FSP-E. The FSP-M have higher temperature stability than the FSP-E, since they presented a denaturation temperature of 58.88 ± 3.36° C, according to the DSC analysis. FSP-M shown distinctive mechanical properties, with a stiffness of 16.57 ± 3.95 MPa and a yield strength of 23.85 ± 5.97 MPa. Human lung fibroblasts cell lines (MRC-5) were cultured in direct contact with FSP-M, demonstrating its cytocompatibility for 48 h. Based on these results, FSP can be considered a potential biomaterial recovered from nature, for wound dressing applications.

Referência(s)