Effects of Power Deposition on the Aerodynamic Forces on a Slender Body
2018; American Institute of Aeronautics and Astronautics; Volume: 56; Issue: 7 Linguagem: Inglês
10.2514/1.j057004
ISSN1533-385X
AutoresDavid Rodríguez-Gutiérrez, Jonathan Poggie,
Tópico(s)Plasma and Flow Control in Aerodynamics
ResumoNo AccessTechnical NoteEffects of Power Deposition on the Aerodynamic Forces on a Slender BodyDavid Rodríguez Gutiérrez and Jonathan PoggieDavid Rodríguez GutiérrezPurdue University, West Lafayette, Indiana 47907-2045 and Jonathan PoggiePurdue University, West Lafayette, Indiana 47907-2045Published Online:2 Apr 2018https://doi.org/10.2514/1.J057004SectionsRead Now ToolsAdd to favoritesDownload citationTrack citations ShareShare onFacebookTwitterLinked InRedditEmail About References [1] Bogdonoff S. M. and Vas I. E., "Preliminary Investigations of Spiked Bodies at Hypersonic Speeds," Journal of the Aerospace Sciences, Vol. 26, No. 2, 1959, pp. 65–74. doi:https://doi.org/10.2514/8.7945 LinkGoogle Scholar[2] Knight D. D., "Survey of Aerodynamic Drag Reduction at High Speed by Energy Deposition," Journal of Propulsion and Power, Vol. 24, No. 6, 2008, pp. 1153–1167. doi:https://doi.org/10.2514/1.24595 JPPOEL 0748-4658 LinkGoogle Scholar[3] Myrabo L. N. and Raizer Y. P., "Laser-Induced Air Spike for Advanced Transatmospheric Vehicles," AIAA Paper 1994-2451, June 1994. doi:https://doi.org/10.2514/6.1994-2451 LinkGoogle Scholar[4] Toro P. G. P., Myrabo L. N. and Nagamatsu H. T., "Pressure Investigation of the Hypersonic 'Directed-Energy Air Spike' Inlet at Mach Number 10 up to 70 kW," AIAA Paper 1998-0991, Jan. 1998. doi:https://doi.org/10.2514/6.1998-991 LinkGoogle Scholar[5] Exton R. J., Balla R. J., Shirinzadeh B., Brauckmann G. J., Herring G. C., Kelliher W. C., Fugitt J., Lazard C. J. and Khodataev K. V., "On-Board Projection of a Microwave Plasma Upstream of a Mach 6 Bow Shock," Physics of Plasmas, Vol. 8, No. 11, 2001, pp. 5013–5017. doi:https://doi.org/10.1063/1.1407819 PHPAEN 1070-664X CrossrefGoogle Scholar[6] Shang J. S., Hayes J. and Menart J., "Hypersonic Flow over a Blunt Body with Plasma Injection," Journal of Spacecraft and Rockets, Vol. 39, No. 3, 2002, pp. 367–375. doi:https://doi.org/10.2514/2.3835 JSCRAG 0022-4650 LinkGoogle Scholar[7] Adelgren R. G., Yan H., Elliot G. S., Knight D. D., Beutner T. J. and Zheltovodov A. A., "Control of Edney IV Interaction by Pulsed Laser Energy Deposition," AIAA Journal, Vol. 43, No. 2, 2005, pp. 256–269. doi:https://doi.org/10.2514/1.7036 AIAJAH 0001-1452 LinkGoogle Scholar[8] Kim J.-H., Matsuda A., Sakai T. and Sasoh A., "Wave Drag Reduction with Acting Spike Induced by Laser-Pulse Energy Depositions," AIAA Journal, Vol. 49, No. 9, 2011, pp. 2076–2078. doi:https://doi.org/10.2514/1.J051145 AIAJAH 0001-1452 LinkGoogle Scholar[9] Erdem E., Kontis K. and Yang L., "Steady Energy Deposition at Mach 5 for Drag Reduction," Shock Waves, Vol. 23, No. 4, 2013, pp. 285–298. doi:https://doi.org/10.1007/s00193-012-0405-8 SHWAEN 0938-1287 Google Scholar[10] Riggins D., Nelson H. F. and Johnson E., "Blunt-Body Wave Drag Reduction Using Focused Energy Deposition," AIAA Journal, Vol. 37, No. 4, 1999, pp. 460–467. doi:https://doi.org/10.2514/2.756 AIAJAH 0001-1452 LinkGoogle Scholar[11] Kremeyer K., Sebastian K. and Shu C.-W., "Computational Study of Shock Mitigation and Drag Reduction by Pulsed Energy Lines," AIAA Journal, Vol. 44, No. 8, 2006, pp. 1720–1731. doi:https://doi.org/10.2514/1.17854 AIAJAH 0001-1452 LinkGoogle Scholar[12] Kolesnichenko Y., Brovkin V., Azarova O., Grundnitsky V., Lashkov V. and Mashek I., "Microwave Energy Release Regimes for Drag Reduction in Supersonic Flows," AIAA Paper 2002-0353, Jan. 2002. doi:https://doi.org/10.2514/6.2002-353 LinkGoogle Scholar[13] Bisek N. J., Boyd I. D. and Poggie J., "Numerical Study of Plasma-Assisted Aerodynamic Control for Hypersonic Vehicles," Journal of Spacecraft and Rockets, Vol. 46, No. 3, 2009, pp. 568–576. doi:https://doi.org/10.2514/1.39032 JSCRAG 0022-4650 LinkGoogle Scholar[14] Atkinson M., Poggie J. and Camberos J., "Control of High-Angle-of-Attack Reentry Flow with Plasma Actuators," Journal of Spacecraft and Rockets, Vol. 50, No. 2, 2013, pp. 337–346. doi:https://doi.org/10.2514/1.A32360 JSCRAG 0022-4650 LinkGoogle Scholar[15] Desai S., Kulkarni V., Gadgil H. and John B., "Aerothermodynamic Considerations for Energy Deposition Based Drag Reduction Technique," Applied Thermal Engineering, Vol. 122, July 2017, pp. 451–460. doi:https://doi.org/10.1016/j.applthermaleng.2017.04.114 ATENFT 1359-4311 CrossrefGoogle Scholar[16] Macheret S. O., Shneider M. N. and Miles R. B., "Scramjet Inlet Control by Off-Body Energy Addition: A Virtual Cowl," AIAA Journal, Vol. 42, No. 11, 2004, pp. 2294–2302. doi:https://doi.org/10.2514/1.3997 AIAJAH 0001-1452 LinkGoogle Scholar[17] Girgis I. G., Shneider M. N., Macheret S. O., Brown G. L. and Miles R. B., "Steering Moments Creation in Supersonic Flow by Off-Axis Plasma Heat Addition," Journal of Spacecraft and Rockets, Vol. 43, No. 3, May 2006, pp. 607–613. doi:https://doi.org/10.2514/1.16708 JSCRAG 0022-4650 LinkGoogle Scholar[18] Georgievskii P. Y. and Levin V. A., "Control of the Flow Past Bodies Using Localized Energy Addition to the Supersonic Oncoming Flow," Fluid Dynamics, Vol. 38, No. 5, 2003, pp. 794–805. doi:https://doi.org/10.1023/B:FLUI.0000007841.91654.10 FLDYAH 0015-4628 CrossrefGoogle Scholar[19] Williams F. A., Combustion Theory, Addison-Wesley, Reading, MA, 1985, pp. 19–37. Google Scholar[20] Economon T. D., Palacios F., Copeland S. R., Lukaczyk T. W. and Alonso J. J., "SU2: An Open-Source Suite for Multiphysics Simulation and Design," AIAA Journal, Vol. 54, No. 3, 2016, pp. 828–846. doi:https://doi.org/10.2514/1.J053813 AIAJAH 0001-1452 LinkGoogle Scholar[21] Shneider M. N., Macheret S. O. and Miles R. B., "Analysis of Magnetohydrodynamic Control of Scramjet Inlets," AIAA Journal, Vol. 42, No. 11, Nov. 2004, pp. 2303–2310. doi:https://doi.org/10.2514/1.3998 AIAJAH 0001-1452 LinkGoogle Scholar[22] Anderson J. D., Hypersonic and High Temperature Gas Dynamics, AIAA, Reston, VA, 2006, pp. 222–223. LinkGoogle Scholar Previous article Next article FiguresReferencesRelatedDetailsCited byHigh-speed aerodynamics control using energy injection of pulsed dischargesAerospace Science and Technology, Vol. 133Characterization of symmetric to non-symmetric flamefront transition in slender microchannelsProceedings of the Combustion Institute, Vol. 225Hypersonic drag and heat reduction mechanism of a new hybrid method of spike, multi-row discs and opposing jets aerodynamic configurationInternational Journal of Heat and Mass Transfer, Vol. 194An effective means of drag reduction in high enthalpy flow through unsteady energy depositionActa Astronautica, Vol. 186Universal scaling parameter for a counter jet drag reduction technique in supersonic flowsPhysics of Fluids, Vol. 32, No. 3Uncertainty and sensitivity study on blunt body's drag and heat reduction with combination of spike and opposing jetActa Astronautica, Vol. 167Charged particles distribution ahead the shock wave front in the electrode discharge plasmaJournal of Physics: Conference Series, Vol. 1400, No. 7 What's Popular Volume 56, Number 7July 2018 CrossmarkInformationCopyright © 2018 by the authors. Published by the American Institute of Aeronautics and Astronautics, Inc., with permission. All requests for copying and permission to reprint should be submitted to CCC at www.copyright.com; employ the ISSN 0001-1452 (print) or 1533-385X (online) to initiate your request. See also AIAA Rights and Permissions www.aiaa.org/randp. TopicsAerodynamicsAeronautical EngineeringAeronauticsAirspeedCFD CodesComputational Fluid DynamicsEquations of Fluid DynamicsFlow RegimesFluid DynamicsFluid MechanicsNormal Shock WaveShock Waves KeywordsFreestream Mach NumberSlender BodyNonequilibrium FlowsKinetic EnergyIdeal GasBow ShockNumerical SimulationFlight ControlPlasma TorchesComputational Fluid Dynamics CodeAcknowledgmentsThe authors are grateful to A. Deshpande and K. Goc for assistance with the computations. Computer time was provided by Purdue University at the Rosen Center for Advanced Computing.PDF Received4 December 2017Accepted31 January 2018Published online2 April 2018
Referência(s)