Stratigraphy, distribution, and evidence for mafic triggering of the ca. 8.5 ka Driftwood Pumice eruption, Makushin Volcano, Alaska, U.S.A
2018; Elsevier BV; Volume: 357; Linguagem: Inglês
10.1016/j.jvolgeores.2018.05.006
ISSN1872-6097
AutoresAllan H. Lerner, Peter D. Crowley, K. P. Nicolaysen, Richard W. Hazlett,
Tópico(s)Geochemistry and Geologic Mapping
ResumoMakushin Volcano on Unalaska Island, Alaska, threatens the Aleutian's largest population centers (Unalaska and Dutch Harbor), yet its eruption mechanisms are poorly known. This study presents a detailed stratigraphic and geochemical investigation of Makushin's most recent highly explosive event: the ca. 8.5 ka Driftwood Pumice eruption. The Driftwood Pumice has measured thicknesses of over 2.5 m, and isopach reconstructions estimate a total deposit volume of 0.3 to 1.6 km3, indicating a VEI 4–5 eruption. Proximal deposits consist of normally-graded, tan, dacitic to andesitic pumice, capped by a thinner dark layer of lower-silica andesitic scoria mixed with abundant lithic fragments. This stratigraphy is interpreted as an initial vent-clearing eruption that strengthened into a climactic ejection of pumice and ash and concluded with vent destabilization and the eruption of somewhat more mafic, gas-poor magma. Within the pumice, geochemical trends, disequilibrium mineral populations, and mineral zonation patterns show evidence of magma mixing between a bulk silicic magma and a mafic melt. Euhedral high-Ca plagioclase (An68–91) and high-Mg olivine (Fo69–77) phenocrysts are in disequilibrium with trachydacitic glass (65–68 wt% SiO2) and more abundant sodic plagioclase (An34–55), indicating the former originally crystallized in a more mafic melt. Tephra whole rock compositions become more mafic upwards through the deposit, ranging from a basal low-silica dacite to an andesite (total range: 60.8–63.3 wt% SiO2). Collectively, these compositional variations suggest magma mixing in the Driftwood Pumice (DWP) magma reservoir, with a systematic increase in the amount of a mafic component (up to 25%) upward through the deposit. Olivine-liquid and liquid-only thermometry indicate the mafic magma intruded at temperatures ~140–200 °C hotter than the silicic magma. Diffusion rates calculated for 5–7 μm thick, lower-Mg rims on the olivine phenocrysts (Fo60 rim vs Fo76 bulk) suggest that the eruption occurred several days to weeks following the mafic injection into a dacitic reservoir. Based on this timing, we infer that the mafic intrusion provided a thermal pulse that initiated convection and volatile exsolution, and ultimately resulted in the DWP eruption. Unalaska's Holocene stratigraphy includes multiple light-dark ashfall couplets with physical and geochemical similarities to the DWP, suggesting that magma mixing may be a common eruptive trigger at Makushin Volcano.
Referência(s)