Artigo Acesso aberto Revisado por pares

On the Experimental Analysis of Integral Sliding Modes for Yaw Rate and Sideslip Control of an Electric Vehicle with Multiple Motors

2018; Springer Science+Business Media; Volume: 19; Issue: 5 Linguagem: Inglês

10.1007/s12239-018-0078-0

ISSN

1976-3832

Autores

Antonio Tota, Basilio Lenzo, Qian Lu, Aldo Sorniotti, Patrick Gruber, Saber Fallah, Mauro Velardocchia, Enrico Galvagno, Jasper De Smet,

Tópico(s)

Real-time simulation and control systems

Resumo

With the advent of electric vehicles with multiple motors, the steady-state and transient cornering responses can be designed and implemented through the continuous torque control of the individual wheels, i.e., torque-vectoring or direct yaw moment control. The literature includes several papers on sliding mode control theory for torque-vectoring, but the experimental investigation is so far limited. More importantly, to the knowledge of the authors, the experimental comparison of direct yaw moment control based on sliding modes and typical controllers used for stability control in production vehicles is missing. This paper aims to reduce this gap by presenting and analyzing an integral sliding mode controller for concurrent yaw rate and sideslip control. A new driving mode, the Enhanced Sport mode, is proposed, inducing sustained high values of sideslip angle, which can be limited to a specified threshold. The system is experimentally assessed on a four-wheel-drive electric vehicle. The performance of the integral sliding mode controller is compared with that of a linear quadratic regulator during step steer tests. The results show that the integral sliding mode controller significantly enhances the tracking performance and yaw damping compared to the more conventional linear quadratic regulator based on an augmented singletrack vehicle model formulation.

Referência(s)