Literature review and appraisal on alternative neurotoxicity testing methods
2018; European Food Safety Authority; Volume: 15; Issue: 4 Linguagem: Inglês
10.2903/sp.efsa.2018.en-1410
ISSN2397-8325
AutoresStefan Masjosthusmann, Marta Barenys, Mohamed El‐Gamal, Lieve Geerts, Laura Gerosa, Adriana Gorreja, Britta Anna Kühne, Natalia Marchetti, Julia Tigges, Barbara Viviani, Hilda Witters, Ellen Fritsche,
Tópico(s)3D Printing in Biomedical Research
ResumoEFSA Supporting PublicationsVolume 15, Issue 4 1410E External scientific reportOpen Access Literature review and appraisal on alternative neurotoxicity testing methods Stefan Masjosthusmann, Stefan Masjosthusmann IUF - Leibniz Research Institute for Environmental Medicine, Auf'm Hennekamp 50, 40225 Düsseldorf, GermanySearch for more papers by this authorMarta Barenys, Marta Barenys IUF - Leibniz Research Institute for Environmental Medicine, Auf'm Hennekamp 50, 40225 Düsseldorf, GermanySearch for more papers by this authorMohamed El-Gamal, Mohamed El-Gamal IUF - Leibniz Research Institute for Environmental Medicine, Auf'm Hennekamp 50, 40225 Düsseldorf, GermanySearch for more papers by this authorLieve Geerts, Lieve Geerts Flemish Institute for Technological Research (VITO), Environmental Risk & Health, Boeretang 200, B-2400 Mol, BelgiumSearch for more papers by this authorLaura Gerosa, Laura Gerosa Università degli Studi di Milano (UMIL), Dipartimento di Scienze Farmacologiche e Biomolecolari - DiSFeB, Via Balzaretti 9, 20133 Milan, ItalySearch for more papers by this authorAdriana Gorreja, Adriana Gorreja Università degli Studi di Milano (UMIL), Dipartimento di Scienze Farmacologiche e Biomolecolari - DiSFeB, Via Balzaretti 9, 20133 Milan, ItalySearch for more papers by this authorBritta Kühne, Britta Kühne IUF - Leibniz Research Institute for Environmental Medicine, Auf'm Hennekamp 50, 40225 Düsseldorf, GermanySearch for more papers by this authorNatalia Marchetti, Natalia Marchetti Università degli Studi di Milano (UMIL), Dipartimento di Scienze Farmacologiche e Biomolecolari - DiSFeB, Via Balzaretti 9, 20133 Milan, ItalySearch for more papers by this authorJulia Tigges, Julia Tigges IUF - Leibniz Research Institute for Environmental Medicine, Auf'm Hennekamp 50, 40225 Düsseldorf, GermanySearch for more papers by this authorBarbara Viviani, Barbara Viviani Università degli Studi di Milano (UMIL), Dipartimento di Scienze Farmacologiche e Biomolecolari - DiSFeB, Via Balzaretti 9, 20133 Milan, ItalySearch for more papers by this authorHilda Witters, Hilda Witters Flemish Institute for Technological Research (VITO), Environmental Risk & Health, Boeretang 200, B-2400 Mol, BelgiumSearch for more papers by this authorEllen Fritsche, Ellen Fritsche IUF - Leibniz Research Institute for Environmental Medicine, Auf'm Hennekamp 50, 40225 Düsseldorf, GermanySearch for more papers by this author Stefan Masjosthusmann, Stefan Masjosthusmann IUF - Leibniz Research Institute for Environmental Medicine, Auf'm Hennekamp 50, 40225 Düsseldorf, GermanySearch for more papers by this authorMarta Barenys, Marta Barenys IUF - Leibniz Research Institute for Environmental Medicine, Auf'm Hennekamp 50, 40225 Düsseldorf, GermanySearch for more papers by this authorMohamed El-Gamal, Mohamed El-Gamal IUF - Leibniz Research Institute for Environmental Medicine, Auf'm Hennekamp 50, 40225 Düsseldorf, GermanySearch for more papers by this authorLieve Geerts, Lieve Geerts Flemish Institute for Technological Research (VITO), Environmental Risk & Health, Boeretang 200, B-2400 Mol, BelgiumSearch for more papers by this authorLaura Gerosa, Laura Gerosa Università degli Studi di Milano (UMIL), Dipartimento di Scienze Farmacologiche e Biomolecolari - DiSFeB, Via Balzaretti 9, 20133 Milan, ItalySearch for more papers by this authorAdriana Gorreja, Adriana Gorreja Università degli Studi di Milano (UMIL), Dipartimento di Scienze Farmacologiche e Biomolecolari - DiSFeB, Via Balzaretti 9, 20133 Milan, ItalySearch for more papers by this authorBritta Kühne, Britta Kühne IUF - Leibniz Research Institute for Environmental Medicine, Auf'm Hennekamp 50, 40225 Düsseldorf, GermanySearch for more papers by this authorNatalia Marchetti, Natalia Marchetti Università degli Studi di Milano (UMIL), Dipartimento di Scienze Farmacologiche e Biomolecolari - DiSFeB, Via Balzaretti 9, 20133 Milan, ItalySearch for more papers by this authorJulia Tigges, Julia Tigges IUF - Leibniz Research Institute for Environmental Medicine, Auf'm Hennekamp 50, 40225 Düsseldorf, GermanySearch for more papers by this authorBarbara Viviani, Barbara Viviani Università degli Studi di Milano (UMIL), Dipartimento di Scienze Farmacologiche e Biomolecolari - DiSFeB, Via Balzaretti 9, 20133 Milan, ItalySearch for more papers by this authorHilda Witters, Hilda Witters Flemish Institute for Technological Research (VITO), Environmental Risk & Health, Boeretang 200, B-2400 Mol, BelgiumSearch for more papers by this authorEllen Fritsche, Ellen Fritsche IUF - Leibniz Research Institute for Environmental Medicine, Auf'm Hennekamp 50, 40225 Düsseldorf, GermanySearch for more papers by this author First published: 27 April 2018 https://doi.org/10.2903/sp.efsa.2018.EN-1410Citations: 8 Question number: EFSA-Q- 2015-00822 Disclaimer: the present document has been produced and adopted by the bodies identified above as authors. This task has been carried out exclusively by the authors in the context of a contract between the European Food Safety Authority and the authors, awarded following a tender procedure. The present document is published complying with the transparency principle to which the Authority is subject. It may not be considered as an output adopted by the Authority. The European Food Safety Authority reserves its rights, view and position as regards the issues addressed and the conclusions reached in the present document, without prejudice to the rights of the authors. AboutPDF ToolsExport citationAdd to favoritesTrack citation ShareShare Give accessShare full text accessShare full-text accessPlease review our Terms and Conditions of Use and check box below to share full-text version of article.I have read and accept the Wiley Online Library Terms and Conditions of UseShareable LinkUse the link below to share a full-text version of this article with your friends and colleagues. Learn more.Copy URL Share a linkShare onFacebookTwitterLinkedInRedditWechat Abstract The goal of this review was the evaluation of information on assessment methods in the field of alternative neurotoxicity (NT) testing. We therefore performed a systematic and comprehensive collection of scientific literature (in English) from the past 27 years until mid of 2017 on state of the art alternative testing methods including in vitro test methods, in silico methods and alternative non-mammalian models. This review identified a variety of test methods that have the ability to predict NT of chemicals based on predefined key NT endpoint categories (27). Those endpoint categories were derived from the Mode of Action (MoA) of known human neurotoxicants. Pre-evaluated MoAs of human neurotoxicants allowed the identification of performance characteristics with regard to the ability of a test system to correctly predict a chemical effect on an endpoint category. The most predictive in vitro model that covers a large variety of endpoint categories are primary rodent cells or tissues. Human based systems derived from induced pluripotent stem cells (iPSC) are promising and warrant human relevance. There is however not yet sufficient data on these models to demonstrate their suitability to reliably substitute primary rodent cells for NT testing purposes. Test methods for glia toxicity are rare and glia endpoint categories are clearly underrepresented. Therefore, a focus for future method development should be placed on glia, astrocytes, oligodendrocytes and microglia based models, preferably in a co-culture se up. The review on in silico methods, resulted into 54 QSARs publications, relevant for NT, of which 39 on blood brain barrier (BBB) permeation. The QSARs available in the publications were developed from data on drugs and chemicals, but there appears a limited set of experimental data for chemicals and pesticides on blood-brain barrier passage. The evaluation of NT methods using alternative whole organism approaches demonstrated a majority of data for C. elegans (nematode species), represented with high true prediction (96%). The main endpoint category was inhibition of cholinergic transmission, with specific endpoints for AChE activity and motor activity, the latter confirming the added value of a whole organism approach among alternative models. Though D. rerio, the zebrafish model appeared a promising model for DNT studies with numerous advantages, it was poorly evaluated for NT endpoints. Next to the need for standardized protocols using C. elegans as a test organism, the zebrafish model needs further exploration for NT relevant endpoints. In conclusion, a NT alternative test battery covering identified and relevant MoA for NT is recommended. Therefore, test methods with relevant controls and standard operation procedures have to be set up for covering most important MoA. To link the human in vitro testing to rodent in vivo studies and validate the stem cell-derived systems, it is advised to include rodent primary cultures into the studies. For more complex, behavioural readout, effects in alternative organisms should be combined with electrophysiological assessments in vitro. References Aday S, Cecchelli R, Hallier-Vanuxeem D, Dehouck MP & Ferreira L (2016) Stem Cell-Based Human Blood-Brain Barrier Models for Drug Discovery and Delivery. Trends Biotechnol. 34: 382– 393 Available at: http://www.ncbi.nlm.nih.gov/pubmed/26838094 [Accessed March 2, 2018] Alloisio S, Nobile M & Novellino A (2015) Multiparametric characterisation of neuronal network activity for in vitro agrochemical neurotoxicity assessment. Neurotoxicology 48: 152– 165 Bal-Price A, Crofton KM, Leist M, Allen S, Arand M, Buetler T, Delrue N, FitzGerald RE, Hartung T, Heinonen T, Hogberg H, Bennekou SH, Lichtensteiger W, Oggier D, Paparella M, Axelstad M, Piersma A, Rached E, Schilter B & Schmuck G, et al (2015a) International STakeholder NETwork (ISTNET): creating a developmental neurotoxicity (DNT) testing road map for regulatory purposes. Arch. Toxicol. 89: 269– 287 Bal-Price A, Crofton KM, Sachana M, Shafer TJ, Behl M, Forsby A, Hargreaves A, Landesmann B, Lein PJ, Louisse J, Monnet-Tschudi F, Paini A, Rolaki A, Schrattenholz A, Suñol C, vanThriel C, Whelan M & Fritsche E (2015b) Putative adverse outcome pathways relevant to neurotoxicity. Crit. Rev. Toxicol. 45: 83– 91 Bal-Price A, Hogberg H, Crofton K & Daneshian M (2018) t4 Workshop Report Recommendation on Test Readiness Criteria for New Approach Methods in Toxicology: Exemplified for Developmental Neurotoxicity1. Available at: http://www.altex.ch/resources/BalPrice_of_180223_v2.pdf [Accessed March 12, 2018] Banerjee J, Shi Y & Azevedo HS (2016a) In vitro blood-brain barrier models for drug research: state-of-the-art and new perspectives on reconstituting these models on artificial basement membrane platforms. Drug Discov. Today 21: 1367– 1386 Banerjee J, Shi YJ & Azevedo HS (2016b) In vitro blood-brain barrier models for drug research: state-of-the-art and new perspectives on reconstituting these models on artificial basement membrane platforms. Drug Discov. Today 21: 1367– 1386 Baumann J, Dach K, Barenys M, Giersiefer S, Goniwiecha J, Lein PJ & Fritsche E (2015) Application of the Neurosphere Assay for DNT Hazard Assessment: Challenges and Limitations. Methods Pharmacol. Toxicol.: 1-29 Available at: http://link.springer.com/10.1007/7653_2015_49 [Accessed November 28, 2016] Booth R & Kim H (2012) Characterization of a microfluidic in vitro model of the blood-brain barrier (μBBB). Lab Chip 12: 1784 Available at: http://xlink.rsc.org/?DOI=c2lc40094d [Accessed March 7, 2018] Bretaud S, Lee S & Guo S (2004) Sensitivity of zebrafish to environmental toxins implicated in Parkinson's disease. Neurotoxicol Teratol 26: 857– 864 Bujak R, Struck-Lewicka W, Kaliszan M, Kaliszan R & Markuszewski MJ (2015) Blood-brain barrier permeability mechanisms in view of quantitative structure-activity relationships (QSAR). J Pharm Biomed Anal 108: 29– 37 Burns J & Weaver DF (2004) A mathematical model for prediction of drug molecule diffusion across the blood-brain barrier. Can. J. Neurol. Sci. 31: 520– 527 Caito S, Yu YC & Aschner M, (2013). Differential response to acrylonitrile toxicity in rat primary astrocytes and microglia. Neurotoxicology, 37, 93– 99 Campanha HM, Carvalho F & Schlosser PM, (2014). Active and peripheral anionic sites of acetylcholinesterase have differential modulation effects on cell proliferation, adhesion and neuritogenesis in the NG108-15 cell line. Toxicol Lett, 230, 122– 131 Canete E & Diogene J, (2008). Comparative study of the use of neuroblastoma cells (Neuro-2a) and neuroblastorna x glioma hybrid cells (NG108-15) for the toxic effect quantification of marine toxins. Toxicon, 52, 541– 550 Canete E & Diogene J, (2010). Improvements in the use of neuroblastoma x glioma hybrid cells (NG108-15) for the toxic effect quantification of marine toxins. Toxicon, 55, 381– 389 Case AJ, Agraz D, Ahmad IM & Zimmerman MC, (2016). Low-Dose Aronia melanocarpa Concentrate Attenuates Paraquat-Induced Neurotoxicity. Oxid Med Cell Longev, 2016, 5296271 Castro-Coronel Y, Del Razo LM, Huerta M, Hernandez-Lopez A, Ortega A & Lopez-Bayghen E, (2011). Arsenite exposure downregulates EAAT1/GLAST transporter expression in glial cells. Toxicol Sci, 122, 539– 550 Cecchelli R, Aday S, Sevin E, Almeida C, Culot M, Dehouck L, Coisne C, Engelhardt B, Dehouck M-P & Ferreira L (2014) A Stable and Reproducible Human Blood-Brain Barrier Model Derived from Hematopoietic Stem Cells. PLoS One 9: e99733 Available at: http://dx.plos.org/10.1371/journal.pone.0099733 [Accessed March 9, 2018] Chang LW (1995) Handbook of Neurotoxicology. Infroma Healthcare. Chaudhuri A, Bowling K, Funderburk C, Lawal H, Inamdar A, Wang Z & O'Donnell JM, (2007). Interaction of genetic and environmental factors in a Drosophila parkinsonism model. J Neurosci, 27, 2457– 2467 Chen G, Bower KA, Xu M, Ding M, Shi X, Ke Z-J & Luo J, (2009). Cyanidin-3-Glucoside Reverses Ethanol-Induced Inhibition of Neurite Outgrowth: Role of Glycogen Synthase Kinase 3 Beta. Neurotox. Res., 15, 321– 331 Choi J, Polcher A & Joas A (2016) Systematic literature review on Parkinson's disease and Childhood Leukaemia and mode of actions for pesticides. EFSA Support. Publ. 13: n/a-n/a Available at: https://doi.org/10.2903/sp.efsa.2016.en-955 Cole RD, Anderson GL & Williams PL, (2004a). The nematode Caenorhabditis elegans as a model of organophosphate-induced mammalian neurotoxicity. Toxicol Appl Pharmacol, 194, 248– 256 Cole RD, Anderson GL & Williams PL, (2004b). The nematode Caenorhabditis elegans as a model of organophosphate-induced mammalian neurotoxicity. Toxicol. Appl. Pharmacol., 194, 248– 256 Cookson MR & Pentreath VW, (1994a). Alterations in the glial fibrillary acidic protein content of primary astrocyte cultures for evaluation of glial cell toxicity. Toxicol Vitr., 8, 351– 359 Cookson MR & Pentreath VW (1994b) ALTERATIONS IN THE GLIAL FIBRILLARY ACIDIC PROTEIN-CONTENT OF PRIMARY ASTROCYTE CULTURES FOR EVALUATION OF GLIAL-CELL TOXICITY. Toxicol. Vitr. 8: 351- Costa LG, Giordano G, Guizzetti M & Vitalone A, (2008). Neurotoxicity of pesticides: a brief review. Front. Biosci., 13, 1240– 1249 Cuadrado MU, Ruiz IL & Gomez-Nieto MA, (2007). QSAR models based on isomorphic and nonisomorphic data fusion for predicting the blood brain barrier permeability. J Comput Chem, 28, 1252– 1260 Cucullo L, Hossain M, Puvenna V, Marchi N & Janigro D (2011) The role of shear stress in Blood-Brain Barrier endothelial physiology. BMC Neurosci. 12: 40 Available at: http://bmcneurosci.biomedcentral.com/articles/10.1186/1471-2202-12-40 [Accessed March 8, 2018] Dach K, Bendt F, Huebenthal U, Giersiefer S, Lein PJ, Heuer H & Fritsche E (2017) BDE-99 impairs differentiation of human and mouse NPCs into the oligodendroglial lineage by species-specific modes of action. Sci. Rep. 7: 44861 Available at: http://www.ncbi.nlm.nih.gov/pubmed/28317842 [Accessed April 6, 2017] Defranchi E, Novellino A, Whelan M, Vogel S, Ramirez T, van Ravenzwaay B & Landsiedel R, (2011). Feasibility Assessment of Micro-Electrode Chip Assay as a Method of Detecting Neurotoxicity in vitro. Front Neuroeng, 4, 6 Djelloul M, Holmqvist S, Boza-Serrano A, Azevedo C, Yeung MS, Goldwurm S, Frisén J, Deierborg T & Roybon L (2015) Alpha-Synuclein Expression in the Oligodendrocyte Lineage: an In Vitro and In Vivo Study Using Rodent and Human Models. Stem Cell Reports 5: 174– 184 Available at: http://www.ncbi.nlm.nih.gov/pubmed/26235891 [Accessed March 28, 2018] Douvaras P, Wang J, Zimmer M, Hanchuk S, O'Bara MA, Sadiq S, Sim FJ, Goldman J & Fossati V (2014) Efficient Generation of Myelinating Oligodendrocytes from Primary Progressive Multiple Sclerosis Patients by Induced Pluripotent Stem Cells. Stem Cell Reports 3: 250– 259 Available at: http://www.ncbi.nlm.nih.gov/pubmed/25254339 [Accessed March 28, 2018] Druwe I, Freudenrich TM, Wallace K, Shafer TJ & Mundy WR, (2015). Sensitivity of neuroprogenitor cells to chemical-induced apoptosis using a multiplexed assay suitable for high-throughput screening. Toxicology, 333, 14– 24 Ehrlich M, Mozafari S, Glatza M, Starost L, Velychko S, Hallmann A-L, Cui Q-L, Schambach A, Kim K-P, Bachelin C, Marteyn A, Hargus G, Johnson RM, Antel J, Sterneckert J, Zaehres H, Schöler HR, Baron-Van Evercooren A & Kuhlmann T (2017) Rapid and efficient generation of oligodendrocytes from human induced pluripotent stem cells using transcription factors. Proc. Natl. Acad. Sci. 114: E2243– E2252 Available at: http://www.pnas.org/content/114/11/E2243.short [Accessed February 18, 2018] Eigenmann DE, Xue G, Kim KS, Moses A V, Hamburger M & Oufir M (2013) Comparative study of four immortalized human brain capillary endothelial cell lines, hCMEC/D3, hBMEC, TY10, and BB19, and optimization of culture conditions, for an in vitro blood-brain barrier model for drug permeability studies. Fluids Barriers CNS 10: 33 Available at: http://fluidsbarrierscns.biomedcentral.com/articles/10.1186/2045-8118-10-33 [Accessed March 8, 2018] Faqi AS (2013) A comprehensive guide to toxicology in preclinical drug development Academic Press Fonck C & Baudry M, (2003). Rapid reduction of ATP synthesis and lack of free radical formation by MPP+ in rat brain synaptosomes and mitochondria. Brain Res, 975, 214– 221 Fritsche E, Alm H, Baumann J, Geerts L, Hakansson H, Masjosthusmann S & Witters H, (2015). Literature review on in vitro and alternative Developmental Neurotoxicity (DNT) testing methods. EFSA Support. Publ., 778, 1– 186 Fujimura M & Usuki F, (2012). Differing effects of toxicants (methylmercury, inorganic mercury, lead, amyloid beta, and rotenone) on cultured rat cerebrocortical neurons: differential expression of rho proteins associated with neurotoxicity. Toxicol Sci, 126, 506– 514 Gao DW, Wang P, Yang L, Peng YZ & Liang H, (2002). Study on the screening of molecular structure parameter in QSAR model. J Env. Sci Heal. A Tox Hazard Subst Env. Eng, 37, 601– 609 Garg P & Verma J, (2006). In silico prediction of blood brain barrier permeability: an Artificial Neural Network model. J Chem Inf Model, 46, 289– 297 Goldstone J V. & Stegeman JJ (2012) Methodological Approaches to Cytochrome P450 Profiling in Embryos. In Methods in molecular biology (Clifton, N.J.) pp 265– 275. Available at: http://www.ncbi.nlm.nih.gov/pubmed/22669670 [Accessed March 12, 2018] Golmohammadi H, Dashtbozorgi Z & Khooshechin S (2017) Prediction of Blood-to-Brain Barrier Partitioning of Drugs and Organic Compounds Using a QSPR Approach. Acta Physico-Chimica Sin. 33: 1160-+ Grandjean P & Landrigan P, (2006). Developmental neurotoxicity of industrial chemicals. Lancet, 368, 2167– 2178 Grandjean P & Landrigan PJ (2014) Neurobehavioural effects of developmental toxicity. Lancet Neurol. 13: 330– 338 Available at: http://www.ncbi.nlm.nih.gov/pubmed/24556010 [Accessed August 18, 2016] Hamann J, Rommelspacher H, Storch A, Reichmann H & Gille G, (2006). Neurotoxic mechanisms of 2,9-dimethyl-beta-carbolinium ion in primary dopaminergic culture. J Neurochem, 98, 1185– 1199 Hamann J, Wernicke C, Lehmann J, Reichmann H, Rommelspacher H & Gille G, (2008). 9-Methyl-beta-carboline up-regulates the appearance of differentiated dopaminergic neurones in primary mesencephalic culture. Neurochem Int, 52, 688– 700 Hatherell K, Couraud PO, Romero IA, Weksler B & Pilkington GJ (2011) Development of a three-dimensional, all-human in vitro model of the blood-brain barrier using mono-, co-, and tri-cultivation Transwell models. J. Neurosci. Methods 199: 223– 229 Available at: https://www.sciencedirect.com/science/article/pii/S0165027011002706 [Accessed March 7, 2018] Helms HC, Abbott NJ, Burek M, Cecchelli R, Couraud P-O, Deli MA, Förster C, Galla HJ, Romero IA, Shusta EV, Stebbins MJ, Vandenhaute E, Weksler B & Brodin B, (2016a). In vitro models of the blood-brain barrier: An overview of commonly used brain endothelial cell culture models and guidelines for their use. J. Cereb. Blood Flow Metab., 36, 862– 890 Helms HC, Abbott NJ, Burek M, Cecchelli R, Couraud PO, Deli MA, Forster C, Galla HJ, Romero IA, Shusta EV, Stebbins MJ, Vandenhaute E, Weksler B & Brodin B, (2016b). In vitro models of the blood-brain barrier: An overview of commonly used brain endothelial cell culture models and guidelines for their use. J. Cereb. Blood Flow Metab., 36, 862– 890 Hofrichter M, Nimtz L, Tigges J, Kabiri Y, Schröter F, Royer-Pokorac B, Hildebrandt B, Schmuck M, Epanchintsev A, Theiss S, Adjaye J, Egly J-M, Krutmann J & Fritsche E (2017) Comparative performance analysis of human iPSC-derived and primary neural progenitor cells (NPC) grown as neurospheres in vitro. Stem Cell Res.: under revision Hondebrink L, Verboven AHA, Drega WS, Schmeink S, deGroot MWGDM, vanKleef RGDM, Wijnolts FMJ, deGroot A, Meulenbelt J & Westerink RHS (2016) Neurotoxicity screening of (illicit) drugs using novel methods for analysis of microelectrode array (MEA) recordings. Neurotoxicology 55: 1– 9 Available at: http://linkinghub.elsevier.com/retrieve/pii/S0161813X16300651 Hong S, Kim JY, Hwang J, Shin KS & Kang SJ, (2013). Heptachlor induced mitochondria-mediated cell death via impairing electron transport chain complex III. Biochem Biophys Res Commun, 437, 632– 636 Hong WS, Pezzi HM, Schuster AR, Berry SM, Sung KE & Beebe DJ, (2016). Development of a Highly Sensitive Cell-Based Assay for Detecting Botulinum Neurotoxin Type A through Neural Culture Media Optimization. J Biomol Screen, 21, 65– 73 Hosamani R, (2013). ACUTE EXPOSURE OF Drosophila melanogaster TO PARAQUAT CAUSES OXIDATIVE STRESS AND MITOCHONDRIAL DYSFUNCTION. Arch. Insect Biochem. Physiol., 83, 25– 40 Hoshi Y, Uchida Y, Tachikawa M, Inoue T, Ohtsuki S & Terasaki T (2013) Quantitative atlas of blood-brain barrier transporters, receptors, and tight junction proteins in rats and common marmoset. J. Pharm. Sci. 102: 3343– 3355 Available at: http://www.japha.org/article/S0022-3549(15)30936-9/abstract [Accessed March 7, 2018] Huff RA & Abou-Donia MB, (1995). In vitro effect of chlorpyrifos oxon on muscarinic receptors and adenylate cyclase. Neurotoxicology, 16, 281– 290 Irons TD, MacPhail RC, Hunter DL & Padilla S, (2010). Acute neuroactive drug exposures alter locomotor activity in larval zebrafish. Neurotoxicol Teratol, 32, 84– 90 Ito K, Uchida Y, Ohtsuki S, Aizawa S, Kawakami H, Katsukura Y, Kamiie J & Terasaki T (2011) Quantitative Membrane Protein Expression at the Blood - Brain Barrier of Adult and Younger Cynomolgus Monkeys. Library (Lond). 100: 3939– 3950 Available at: http://www.japha.org/article/S0022-3549(15)31938-9/abstract [Accessed March 7, 2018] Iyer M, Mishra R, Han Y & Hopfinger AJ, (2002). Predicting Blood-Brain Barrier Partitioning of Organic Molecules Using Membrane-Interaction QSAR Analysis. Pharm. Res., 19, 1611– 1621 Jönnson & Wim, (2009). The cost of dementia in Europe. Pharmacoeconomics, 27, 391– 403 Kepp O, Galluzzi L, Lipinski M, Yuan J & Kroemer G, (2011). Cell death assays for drug discovery. Nat. Rev. Drug Discov., 10, 221– 237 Kim Y V (2009) Human astrocytes/astrocyte conditioned medium and shear stress enhance the barrier properties of human brain microvascular endothelial cells. Brain: 39– 50 Available at: https://www.sciencedirect.com/science/article/pii/S0006899307003307 [Accessed March 6, 2018] Klimisch H-J, Andreae M & Tillmann U, (1997). A Systematic Approach for Evaluating the Quality of Experimental Toxicological and Ecotoxicological Data. Regul. Toxicol. Pharmacol., 25, 1– 5 Krug AK, Kolde R, Gaspar JA, Rempel E, Balmer NV, Meganathan K, Vojnits K, Baquie M, Waldmann T, Ensenat-Waser R, Jagtap S, Evans RM, Julien S, Peterson H, Zagoura D, Kadereit S, Gerhard D, Sotiriadou I, Heke M, Natarajan K, et al., (2013). Human embryonic stem cell-derived test systems for developmental neurotoxicity: a transcriptomics approach. Arch Toxicol, 87, 123– 143 Kubik LL & Philbert MA, (2015). The Role of Astrocyte Mitochondria in Differential Regional Susceptibility to Environmental Neurotoxicants: Tools for Understanding Neurodegeneration. Toxicol. Sci., 144, 7– 16 Landrigan PJ, Sonawane B, Butler RN, Trasande L, Callan R & Droller D (2005) Early environmental origins of neurodegenerative disease in later life. Environ. Health Perspect. 113: 1230– 3 Available at: http://www.ncbi.nlm.nih.gov/pubmed/16140633 [Accessed May 25, 2017] Lee HJ, Han J, Jang Y, Kim SJ, Park JH, Seo KS, Jeong S, Shin S, Lim K, Heo JY & Kweon GR, (2015a). Docosahexaenoic acid prevents paraquat-induced reactive oxygen species production in dopaminergic neurons via enhancement of glutathione homeostasis. Biochem Biophys Res Commun, 457, 95– 100 Lee JH, Mitchell RR, McNicol JD, Shapovalova Z, Laronde S, Tanasijevic B, Milsom C, Casado F, Fiebig-Comyn A, Collins TJ, Singh KK & Bhatia M, (2015b). Single Transcription Factor Conversion of Human Blood Fate to NPCs with CNS and PNS Developmental Capacity. Cell Rep, 11, 1367– 1376 Leist M & Hartung T, (2013). Inflammatory findings on species extrapolations: humans are definitely no 70-kg mice. Arch. Toxicol., 87, 563– 567 Leist M, Ringwald A, Kolde R, Bremer S, van Thriel C, Krause K-H, Rahnenführer J, Sachinidis A, Hescheler J & Hengstler JG, (2013). Test systems of developmental toxicity: state-of-the art and future perspectives. Arch. Toxicol., 87, 2037– 2042 Li J, Spletter ML, Johnson DA, Wright LS, Svendsen CN & Johnson JA, (2005). Rotenone-induced caspase 9/3-independent and -dependent cell death in undifferentiated and differentiated human neural stem cells. J Neurochem, 92, 462– 476 Li W, Sun W, Zhang Y, Wei W, Ambasudhan R, Xia P, Talantova M, Lin T, Kim J, Wang X, Kim WR, Lipton SA, Zhang K & Ding S (2011) Rapid induction and long-term self-renewal of primitive neural precursors from human embryonic stem cells by small molecule inhibitors. Proc. Natl. Acad. Sci. U. S. A. 108: 8299– 304 Available at: http://www.pnas.org/cgi/doi/10.1073/pnas.1014041108 [Accessed March 9, 2018] Lippmann ES, Al-Ahmad A, Azarin SM, Palecek SP & Shusta E V. (2015) A retinoic acid-enhanced, multicellular human blood-brain barrier model derived from stem cell sources. Sci. Rep. 4: 4160 Available at: https://www.nature.com/articles/srep04160 [Accessed March 8, 2018] Lippmann ES, Azarin SM, Kay JE, Nessler RA, Wilson HK, Al-Ahmad A, Palecek SP & Shusta E V (2012) Derivation of Blood-Brain Barrier Endothelial Cells from Human Pluripotent Stem Cells. Nat. Biotechnol. 30: 783– 791 Available at: https://www.nature.com/articles/nbt.2247 [Accessed March 8, 2018] Malik N, Efthymiou AG, Mather K, Chester N, Wang X, Nath A, Rao MS & Steiner JP, (2014). Compounds with species and cell type specific toxicity identified in a 2000 compound drug screen of neural stem cells and rat mixed cortical neurons. Neurotoxicology, 45, 192– 200 Matthews RA, (2008). Medical progress depends on animal models - doesn't it? J. R. Soc. Med., 101, 95– 98 Maurer LL & Philbert MA, (2015). The mechanisms of neurotoxicity and the selective vulnerability of nervous system sites. Handb. Clin. Neurol., 131, 61– 70 McConnell ER, McClain MA, Ross J, LeFew WR & Shafer TJ, (2012). Evaluation of multi-well microelectrode arrays for neurotoxicity screening using a chemical training set. Neurotoxicology, 33, 1048– 1057 Méry B, Guy J-B, Vallard A, Espenel S, Ardail D, Rodriguez-Lafrasse C, Rancoule C & Magné N, (2017). In Vitro Cell Death Determination for Drug Discovery: A Landscape Review of Real Issues. J. Cell Death, 10, 117967071769125 Miller RL, Sun GY & Sun AY, (2007). Cytotoxicity of paraquat in microglial cells: Involvement of PKCdelta- and ERK1/2-dependent NADPH oxidase. Brain Res, 1167, 129– 139 Nakagawa S, Deli MA, Kawaguchi H, Shimizudani T, Shimono T, Kittel Á, Tanaka K & Niwa M (2009) A new blood-brain barrier model using primary rat brain endothelial cells, pericytes and astrocytes. Neurochem. Int. 54: 253– 263 Available at: https://www.sciencedirect.com/science/article/pii/S0197018608001976 [Accessed March 7, 2018] Nakagawa S, Deli MA, Nakao S, Honda M, Hayashi K, Nakaoke R, Kataoka Y & Niwa M (2007) Pericytes from Brain Microvessels Strengthen the Barrier Integrity in Primary Cultures of Rat Brain Endothelial Cells. Cell. Mol. Neurobiol. 27: 687– 694 Available at: http://link.springer.com/10.1007/s10571-007-9195-4 [Accessed March 7, 2018]
Referência(s)