Artigo Acesso aberto Revisado por pares

Mutations in C11orf70 Cause Primary Ciliary Dyskinesia with Randomization of Left/Right Body Asymmetry Due to Defects of Outer and Inner Dynein Arms

2018; Elsevier BV; Volume: 102; Issue: 5 Linguagem: Inglês

10.1016/j.ajhg.2018.03.025

ISSN

1537-6605

Autores

Inga M. Höben, Rim Hjeij, Heike Olbrich, Gerard W. Dougherty, Tabea Nöthe-Menchen, Isabella Aprea, Diana Frank, Petra Pennekamp, Bernd Dworniczak, Julia Wallmeier, Johanna Raidt, Kim G. Nielsen, Maria C. Philipsen, Francesca Santamaria, Laura Venditto, Israel Amirav, Huda Mussaffi, Freerk Prenzel, Kaman Wu, Zeineb Bakey, Miriam Schmidts, Niki T. Loges, Heymut Omran,

Tópico(s)

Genetic Syndromes and Imprinting

Resumo

Primary ciliary dyskinesia (PCD) is characterized by chronic airway disease, male infertility, and randomization of the left/right body axis as a result of defects of motile cilia and sperm flagella. We identified loss-of-function mutations in the open-reading frame C11orf70 in PCD individuals from five distinct families. Transmission electron microscopy analyses and high-resolution immunofluorescence microscopy demonstrate that loss-of-function mutations in C11orf70 cause immotility of respiratory cilia and sperm flagella, respectively, as a result of the loss of axonemal outer (ODAs) and inner dynein arms (IDAs), indicating that C11orf70 is involved in cytoplasmic assembly of dynein arms. Expression analyses of C11orf70 showed that C11orf70 is expressed in ciliated respiratory cells and that the expression of C11orf70 is upregulated during ciliogenesis, similar to other previously described cytoplasmic dynein-arm assembly factors. Furthermore, C11orf70 shows an interaction with cytoplasmic ODA/IDA assembly factor DNAAF2, supporting our hypothesis that C11orf70 is a preassembly factor involved in the pathogenesis of PCD. The identification of additional genetic defects that cause PCD and male infertility is of great importance for the clinic as well as for genetic counselling. Primary ciliary dyskinesia (PCD) is characterized by chronic airway disease, male infertility, and randomization of the left/right body axis as a result of defects of motile cilia and sperm flagella. We identified loss-of-function mutations in the open-reading frame C11orf70 in PCD individuals from five distinct families. Transmission electron microscopy analyses and high-resolution immunofluorescence microscopy demonstrate that loss-of-function mutations in C11orf70 cause immotility of respiratory cilia and sperm flagella, respectively, as a result of the loss of axonemal outer (ODAs) and inner dynein arms (IDAs), indicating that C11orf70 is involved in cytoplasmic assembly of dynein arms. Expression analyses of C11orf70 showed that C11orf70 is expressed in ciliated respiratory cells and that the expression of C11orf70 is upregulated during ciliogenesis, similar to other previously described cytoplasmic dynein-arm assembly factors. Furthermore, C11orf70 shows an interaction with cytoplasmic ODA/IDA assembly factor DNAAF2, supporting our hypothesis that C11orf70 is a preassembly factor involved in the pathogenesis of PCD. The identification of additional genetic defects that cause PCD and male infertility is of great importance for the clinic as well as for genetic counselling. Cilia are hair-like organelles extending from nearly all types of polarized cells. Motile cilia in distinct cell types in the human body perform essential biological functions such as generation of fluid flow and mucociliary clearance of the airways.1Fliegauf M. Benzing T. Omran H. When cilia go bad: Cilia defects and ciliopathies.Nat. Rev. Mol. Cell Biol. 2007; 8: 880-893Crossref PubMed Scopus (909) Google Scholar The basic structure of motile cilia consists of a ring of nine peripheral microtubule doublets, which surround one central pair (9 + 2 structure). The peripheral ring is connected to the central pair (CP) through radial spokes (RSs) and the nexin-dynein regulatory complex (N-DRC). The CP, the N-DRC, and the inner dynein arms (IDAs) are responsible for modulation and regulation of the ciliary beating2Satir P. Studies on cilia. 3. Further studies on the cilium tip and a “sliding filament” model of ciliary motility.J. Cell Biol. 1968; 39: 77-94Crossref PubMed Scopus (368) Google Scholar, 3Summers K.E. Gibbons I.R. Adenosine triphosphate-induced sliding of tubules in trypsin-treated flagella of sea-urchin sperm.Proc. Natl. Acad. Sci. USA. 1971; 68: 3092-3096Crossref PubMed Scopus (535) Google Scholar whereas the outer dynein arms (ODAs) are responsible for the beat generation. ODAs and IDAs are large multimeric protein complexes that are pre-assembled in the cytoplasm before transport to the axonemes.4Fowkes M.E. Mitchell D.R. The role of preassembled cytoplasmic complexes in assembly of flagellar dynein subunits.Mol. Biol. Cell. 1998; 9: 2337-2347Crossref PubMed Scopus (144) Google Scholar There are at least two types of ODAs in humans: type 1, containing the axonemal dynein heavy chains (HCs) DNAH5 and DNAH11, located proximally, and type 2, containing the dynein HCs DNAH5 and DNAH9, located distally in the ciliary axonemes.5Fliegauf M. Olbrich H. Horvath J. Wildhaber J.H. Zariwala M.A. Kennedy M. Knowles M.R. Omran H. Mislocalization of DNAH5 and DNAH9 in respiratory cells from patients with primary ciliary dyskinesia.Am. J. Respir. Crit. Care Med. 2005; 171: 1343-1349Crossref PubMed Scopus (223) Google Scholar, 6Dougherty G.W. Loges N.T. Klinkenbusch J.A. Olbrich H. Pennekamp P. Menchen T. Raidt J. Wallmeier J. Werner C. Westermann C. et al.DNAH11 localization in the proximal region of respiratory cilia defines distinct outer dynein arm complexes.Am. J. Respir. Cell Mol. Biol. 2016; 55: 213-224Crossref PubMed Scopus (78) Google Scholar In Chlamydomonas reinhardtii, there are seven distinct IDA complexes, one double-headed and six single-headed.7Porter M.E. Sale W.S. The 9 + 2 axoneme anchors multiple inner arm dyneins and a network of kinases and phosphatases that control motility.J. Cell Biol. 2000; 151: F37-F42Crossref PubMed Scopus (318) Google Scholar The IDA I1 complex contains two HCs (α- and β-HC) and the intermediate-chain light-chain complex (ICLC).8Heuser T. Barber C.F. Lin J. Krell J. Rebesco M. Porter M.E. Nicastro D. Cryoelectron tomography reveals doublet-specific structures and unique interactions in the I1 dynein.Proc. Natl. Acad. Sci. USA. 2012; 109: E2067-E2076Crossref PubMed Scopus (73) Google Scholar The six single-headed complexes can be divided into two groups on the basis of their association with specific light chains: the three IDA complexes of group I2 contain each one HC that associates with the dynein light chain p28.7Porter M.E. Sale W.S. The 9 + 2 axoneme anchors multiple inner arm dyneins and a network of kinases and phosphatases that control motility.J. Cell Biol. 2000; 151: F37-F42Crossref PubMed Scopus (318) Google Scholar The IDA complexes of group I3 also each contain one HC, which associates with centrin.7Porter M.E. Sale W.S. The 9 + 2 axoneme anchors multiple inner arm dyneins and a network of kinases and phosphatases that control motility.J. Cell Biol. 2000; 151: F37-F42Crossref PubMed Scopus (318) Google Scholar The identification of proteins responsible for the correct assembly and composition of these protein complexes is critical to understanding the disease mechanisms of motile-cilia-related disorders such as primary ciliary dyskinesia (PCD). Primary ciliary dykinesia (PCD) (MIM: 244400) is a rare genetic disorder caused by immotile or dyskinetic cilia and has a prevalence in the range of 1:4.000 to 1:20.000.9Mirra V. Werner C. Santamaria F. Primary ciliary dyskinesia: An update on clinical aspects, genetics, diagnosis, and future treatment strategies.Front Pediatr. 2017; 5: 135-147Crossref PubMed Scopus (93) Google Scholar Ciliary dysfunction in upper and lower airways leads to defective mucociliary clearance of the airways and subsequently to recurrent airway inflammation, bronchiectasis (Figure 1), and progressive lung failure. Dysfunction of cilia of the left-right organizer (LRO) during early embryonic development results in randomization of the left/right body asymmetry. Approximately half of the PCD individuals exhibit situs inversus totalis (Figure 1), referred to as Kartagener’s syndrome.9Mirra V. Werner C. Santamaria F. Primary ciliary dyskinesia: An update on clinical aspects, genetics, diagnosis, and future treatment strategies.Front Pediatr. 2017; 5: 135-147Crossref PubMed Scopus (93) Google Scholar More rarely, other situs anomalies associated with complex congenital heart disease are observed.10Kennedy M.P. Omran H. Leigh M.W. Dell S. Morgan L. Molina P.L. Robinson B.V. Minnix S.L. Olbrich H. Severin T. et al.Congenital heart disease and other heterotaxic defects in a large cohort of patients with primary ciliary dyskinesia.Circulation. 2007; 115: 2814-2821Crossref PubMed Scopus (313) Google Scholar Defects underlying motile-cilia dysfunction often affect sperm flagella function and cause male infertility in PCD-affected individuals, warranting assisted-reproductive technologies. Another consequence of ciliary dysfunction, particularly evident in PCD mouse models, is hydrocephalus formation caused by disrupted flow of the cerebrospinal fluid through the cerebral aqueduct connecting the third and fourth brain ventricles.11Ibañez-Tallon I. Pagenstecher A. Fliegauf M. Olbrich H. Kispert A. Ketelsen U.P. North A. Heintz N. Omran H. Dysfunction of axonemal dynein heavy chain Mdnah5 inhibits ependymal flow and reveals a novel mechanism for hydrocephalus formation.Hum. Mol. Genet. 2004; 13: 2133-2141Crossref PubMed Scopus (275) Google Scholar Although dysmotility of the ependymal cilia is not sufficient for hydrocephalus formation in humans, probably because of morphological differences between the mouse and human brain, the incidence of hydrocephalus, secondary to aqueduct closure, is increased in PCD-affected individuals.11Ibañez-Tallon I. Pagenstecher A. Fliegauf M. Olbrich H. Kispert A. Ketelsen U.P. North A. Heintz N. Omran H. Dysfunction of axonemal dynein heavy chain Mdnah5 inhibits ependymal flow and reveals a novel mechanism for hydrocephalus formation.Hum. Mol. Genet. 2004; 13: 2133-2141Crossref PubMed Scopus (275) Google Scholar PCD diagnosis is difficult and relies on a combination of tests, including nasal nitric oxide (nNO) production rate measurement, high-speed video-microscopy of cilia, ciliary-structure analyses by transmission electron microscopy (TEM),12Lucas J.S. Barbato A. Collins S.A. Goutaki M. Behan L. Caudri D. Dell S. Eber E. Escudier E. Hirst R.A. et al.European Respiratory Society guidelines for the diagnosis of primary ciliary dyskinesia.Eur. Respir. J. 2017; 49: 49Crossref Scopus (354) Google Scholar and high-resolution immunofluorescence microscopy. Until now, mutations in 39 genes, responsible for an estimated 70% of cases, have been linked to PCD.13Edelbusch C. Cindrić S. Dougherty G.W. Loges N.T. Olbrich H. Rivlin J. Wallmeier J. Pennekamp P. Amirav I. Omran H. Mutation of serine/threonine protein kinase 36 (STK36) causes primary ciliary dyskinesia with a central pair defect.Hum. Mutat. 2017; 38: 964-969Crossref PubMed Scopus (44) Google Scholar Genetic analyses of PCD-affected individuals identified several autosomal-recessive mutations in genes encoding axonemal subunits of the ODA and ODA-docking complexes,14Olbrich H. Häffner K. Kispert A. Völkel A. Volz A. Sasmaz G. Reinhardt R. Hennig S. Lehrach H. Konietzko N. et al.Mutations in DNAH5 cause primary ciliary dyskinesia and randomization of left-right asymmetry.Nat. Genet. 2002; 30: 143-144Crossref PubMed Scopus (427) Google Scholar, 15Pennarun G. Escudier E. Chapelin C. Bridoux A.M. Cacheux V. Roger G. Clément A. Goossens M. Amselem S. Duriez B. Loss-of-function mutations in a human gene related to Chlamydomonas reinhardtii dynein IC78 result in primary ciliary dyskinesia.Am. J. Hum. Genet. 1999; 65: 1508-1519Abstract Full Text Full Text PDF PubMed Scopus (296) Google Scholar, 16Panizzi J.R. Becker-Heck A. Castleman V.H. Al-Mutairi D. Liu Y. Loges N.T. Pathak N. Austin-Tse C. Sheridan E. Schmidts M. et al.CCDC103 mutations cause primary ciliary dyskinesia by disrupting assembly of ciliary dynein arms.Nat. Genet. 2012; 44: 714-719Crossref PubMed Scopus (183) Google Scholar, 17Loges N.T. Olbrich H. Fenske L. Mussaffi H. Horvath J. Fliegauf M. Kuhl H. Baktai G. Peterffy E. Chodhari R. et al.DNAI2 mutations cause primary ciliary dyskinesia with defects in the outer dynein arm.Am. J. Hum. Genet. 2008; 83: 547-558Abstract Full Text Full Text PDF PubMed Scopus (191) Google Scholar, 18Mazor M. Alkrinawi S. Chalifa-Caspi V. Manor E. Sheffield V.C. Aviram M. Parvari R. Primary ciliary dyskinesia caused by homozygous mutation in DNAL1, encoding dynein light chain 1.Am. J. Hum. Genet. 2011; 88: 599-607Abstract Full Text Full Text PDF PubMed Scopus (97) Google Scholar, 19Duriez B. Duquesnoy P. Escudier E. Bridoux A.M. Escalier D. Rayet I. Marcos E. Vojtek A.M. Bercher J.F. Amselem S. A common variant in combination with a nonsense mutation in a member of the thioredoxin family causes primary ciliary dyskinesia.Proc. Natl. Acad. Sci. USA. 2007; 104: 3336-3341Crossref PubMed Scopus (151) Google Scholar, 20Bartoloni L. Blouin J.L. Pan Y. Gehrig C. Maiti A.K. Scamuffa N. Rossier C. Jorissen M. Armengot M. Meeks M. et al.Mutations in the DNAH11 (axonemal heavy chain dynein type 11) gene cause one form of situs inversus totalis and most likely primary ciliary dyskinesia.Proc. Natl. Acad. Sci. USA. 2002; 99: 10282-10286Crossref PubMed Scopus (269) Google Scholar, 21Schwabe G.C. Hoffmann K. Loges N.T. Birker D. Rossier C. de Santi M.M. Olbrich H. Fliegauf M. Failly M. Liebers U. et al.Primary ciliary dyskinesia associated with normal axoneme ultrastructure is caused by DNAH11 mutations.Hum. Mutat. 2008; 29: 289-298Crossref PubMed Scopus (190) Google Scholar, 22Knowles M.R. Leigh M.W. Carson J.L. Davis S.D. Dell S.D. Ferkol T.W. Olivier K.N. Sagel S.D. Rosenfeld M. Burns K.A. et al.Genetic Disorders of Mucociliary Clearance ConsortiumMutations of DNAH11 in patients with primary ciliary dyskinesia with normal ciliary ultrastructure.Thorax. 2012; 67: 433-441Crossref PubMed Scopus (156) Google Scholar, 23Hjeij R. Lindstrand A. Francis R. Zariwala M.A. Liu X. Li Y. Damerla R. Dougherty G.W. Abouhamed M. Olbrich H. et al.ARMC4 mutations cause primary ciliary dyskinesia with randomization of left/right body asymmetry.Am. J. Hum. Genet. 2013; 93: 357-367Abstract Full Text Full Text PDF PubMed Scopus (109) Google Scholar, 24Onoufriadis A. Paff T. Antony D. Shoemark A. Micha D. Kuyt B. Schmidts M. Petridi S. Dankert-Roelse J.E. Haarman E.G. et al.UK10KSplice-site mutations in the axonemal outer dynein arm docking complex gene CCDC114 cause primary ciliary dyskinesia.Am. J. Hum. Genet. 2013; 92: 88-98Abstract Full Text Full Text PDF PubMed Scopus (131) Google Scholar, 25Knowles M.R. Leigh M.W. Ostrowski L.E. Huang L. Carson J.L. Hazucha M.J. Yin W. Berg J.S. Davis S.D. Dell S.D. et al.Genetic Disorders of Mucociliary Clearance ConsortiumExome sequencing identifies mutations in CCDC114 as a cause of primary ciliary dyskinesia.Am. J. Hum. Genet. 2013; 92: 99-106Abstract Full Text Full Text PDF PubMed Scopus (103) Google Scholar, 26Hjeij R. Onoufriadis A. Watson C.M. Slagle C.E. Klena N.T. Dougherty G.W. Kurkowiak M. Loges N.T. Diggle C.P. Morante N.F.C. et al.UK10K ConsortiumCCDC151 mutations cause primary ciliary dyskinesia by disruption of the outer dynein arm docking complex formation.Am. J. Hum. Genet. 2014; 95: 257-274Abstract Full Text Full Text PDF PubMed Scopus (119) Google Scholar the N-DRC,27Wirschell M. Olbrich H. Werner C. Tritschler D. Bower R. Sale W.S. Loges N.T. Pennekamp P. Lindberg S. Stenram U. et al.The nexin-dynein regulatory complex subunit DRC1 is essential for motile cilia function in algae and humans.Nat. Genet. 2013; 45: 262-268Crossref PubMed Scopus (152) Google Scholar, 28Austin-Tse C. Halbritter J. Zariwala M.A. Gilberti R.M. Gee H.Y. Hellman N. Pathak N. Liu Y. Panizzi J.R. Patel-King R.S. et al.Zebrafish ciliopathy screen plus human mutational analysis identifies C21orf59 and CCDC65 defects as causing primary ciliary dyskinesia.Am. J. Hum. Genet. 2013; 93: 672-686Abstract Full Text Full Text PDF PubMed Scopus (137) Google Scholar, 29Horani A. Brody S.L. Ferkol T.W. Shoseyov D. Wasserman M.G. Ta-shma A. Wilson K.S. Bayly P.V. Amirav I. Cohen-Cymberknoh M. et al.CCDC65 mutation causes primary ciliary dyskinesia with normal ultrastructure and hyperkinetic cilia.PLoS ONE. 2013; 8: e72299Crossref PubMed Scopus (88) Google Scholar, 30Olbrich H. Cremers C. Loges N.T. Werner C. Nielsen K.G. Marthin J.K. Philipsen M. Wallmeier J. Pennekamp P. Menchen T. et al.Loss-of-function GAS8 mutations cause primary ciliary dyskinesia and disrupt the Nexin-Dynein regulatory complex.Am. J. Hum. Genet. 2015; 97: 546-554Abstract Full Text Full Text PDF PubMed Scopus (83) Google Scholar the 96 nm axonemal ruler proteins,31Merveille A.C. Davis E.E. Becker-Heck A. Legendre M. Amirav I. Bataille G. Belmont J. Beydon N. Billen F. Clément A. et al.CCDC39 is required for assembly of inner dynein arms and the dynein regulatory complex and for normal ciliary motility in humans and dogs.Nat. Genet. 2011; 43: 72-78Crossref PubMed Scopus (254) Google Scholar, 32Becker-Heck A. Zohn I.E. Okabe N. Pollock A. Lenhart K.B. Sullivan-Brown J. McSheene J. Loges N.T. Olbrich H. Haeffner K. et al.The coiled-coil domain containing protein CCDC40 is essential for motile cilia function and left-right axis formation.Nat. Genet. 2011; 43: 79-84Crossref PubMed Scopus (226) Google Scholar the RS,33Castleman V.H. Romio L. Chodhari R. Hirst R.A. de Castro S.C. Parker K.A. Ybot-Gonzalez P. Emes R.D. Wilson S.W. Wallis C. et al.Mutations in radial spoke head protein genes RSPH9 and RSPH4A cause primary ciliary dyskinesia with central-microtubular-pair abnormalities.Am. J. Hum. Genet. 2009; 84: 197-209Abstract Full Text Full Text PDF PubMed Scopus (245) Google Scholar, 34Ziętkiewicz E. Bukowy-Bieryłło Z. Voelkel K. Klimek B. Dmeńska H. Pogorzelski A. Sulikowska-Rowińska A. Rutkiewicz E. Witt M. Mutations in radial spoke head genes and ultrastructural cilia defects in East-European cohort of primary ciliary dyskinesia patients.PLoS ONE. 2012; 7: e33667Crossref PubMed Scopus (43) Google Scholar, 35Frommer A. Hjeij R. Loges N.T. Edelbusch C. Jahnke C. Raidt J. Werner C. Wallmeier J. Große-Onnebrink J. Olbrich H. et al.Immunofluorescence analysis and diagnosis of primary ciliary dyskinesia with radial spoke defects.Am. J. Respir. Cell Mol. Biol. 2015; 53: 563-573Crossref PubMed Scopus (91) Google Scholar, 36El Khouri E. Thomas L. Jeanson L. Bequignon E. Vallette B. Duquesnoy P. Montantin G. Copin B. Dastot-Le Moal F. Blanchon S. et al.Mutations in DNAJB13, encoding an HSP40 family member, cause primary ciliary dyskinesia and male infertility.Am. J. Hum. Genet. 2016; 99: 489-500Abstract Full Text Full Text PDF PubMed Scopus (67) Google Scholar and CP-associated proteins13Edelbusch C. Cindrić S. Dougherty G.W. Loges N.T. Olbrich H. Rivlin J. Wallmeier J. Pennekamp P. Amirav I. Omran H. Mutation of serine/threonine protein kinase 36 (STK36) causes primary ciliary dyskinesia with a central pair defect.Hum. Mutat. 2017; 38: 964-969Crossref PubMed Scopus (44) Google Scholar, 37Olbrich H. Schmidts M. Werner C. Onoufriadis A. Loges N.T. Raidt J. Banki N.F. Shoemark A. Burgoyne T. Al Turki S. et al.UK10K ConsortiumRecessive HYDIN mutations cause primary ciliary dyskinesia without randomization of left-right body asymmetry.Am. J. Hum. Genet. 2012; 91: 672-684Abstract Full Text Full Text PDF PubMed Scopus (209) Google Scholar (Figure 2). Although the process of cytoplasmic pre-assembly of dynein arms is still poorly understood, several genes encoding proteins involved in this process were identified: DNAAF1 (LRRC50) (MIM: 613190),38Loges N.T. Olbrich H. Becker-Heck A. Häffner K. Heer A. Reinhard C. Schmidts M. Kispert A. Zariwala M.A. Leigh M.W. et al.Deletions and point mutations of LRRC50 cause primary ciliary dyskinesia due to dynein arm defects.Am. J. Hum. Genet. 2009; 85: 883-889Abstract Full Text Full Text PDF PubMed Scopus (177) Google Scholar, 39Duquesnoy P. Escudier E. Vincensini L. Freshour J. Bridoux A.-M. Coste A. Deschildre A. de Blic J. Legendre M. Montantin G. et al.Loss-of-function mutations in the human ortholog of Chlamydomonas reinhardtii ODA7 disrupt dynein arm assembly and cause primary ciliary dyskinesia.Am. J. Hum. Genet. 2009; 85: 890-896Abstract Full Text Full Text PDF PubMed Scopus (127) Google Scholar DNAAF2 (KTU) (MIM: 612517),40Omran H. Kobayashi D. Olbrich H. Tsukahara T. Loges N.T. Hagiwara H. Zhang Q. Leblond G. O’Toole E. Hara C. et al.Ktu/PF13 is required for cytoplasmic pre-assembly of axonemal dyneins.Nature. 2008; 456: 611-616Crossref PubMed Scopus (285) Google Scholar DNAAF3 (C19orf51) (MIM: 614566),41Mitchison H.M. Schmidts M. Loges N.T. Freshour J. Dritsoula A. Hirst R.A. O’Callaghan C. Blau H. Al Dabbagh M. Olbrich H. et al.Mutations in axonemal dynein assembly factor DNAAF3 cause primary ciliary dyskinesia.Nat. Genet. 2012; 44 (S1–S2): 381-389Crossref PubMed Scopus (192) Google Scholar DNAAF4 (DYX1C1) (MIM: 608709),42Tarkar A. Loges N.T. Slagle C.E. Francis R. Dougherty G.W. Tamayo J.V. Shook B. Cantino M. Schwartz D. Jahnke C. et al.UK10KDYX1C1 is required for axonemal dynein assembly and ciliary motility.Nat. Genet. 2013; 45: 995-1003Crossref PubMed Scopus (195) Google Scholar DNAAF5 (HEATR2) (MIM: 614864),43Horani A. Druley T.E. Zariwala M.A. Patel A.C. Levinson B.T. Van Arendonk L.G. Thornton K.C. Giacalone J.C. Albee A.J. Wilson K.S. et al.Whole-exome capture and sequencing identifies HEATR2 mutation as a cause of primary ciliary dyskinesia.Am. J. Hum. Genet. 2012; 91: 685-693Abstract Full Text Full Text PDF PubMed Scopus (129) Google Scholar LRRC6 (MIM: 614930),44Kott E. Duquesnoy P. Copin B. Legendre M. Dastot-Le Moal F. Montantin G. Jeanson L. Tamalet A. Papon J.-F. Siffroi J.-P. et al.Loss-of-function mutations in LRRC6, a gene essential for proper axonemal assembly of inner and outer dynein arms, cause primary ciliary dyskinesia.Am. J. Hum. Genet. 2012; 91: 958-964Abstract Full Text Full Text PDF PubMed Scopus (137) Google Scholar ZMYND10 (MIM: 607070),45Moore D.J. Onoufriadis A. Shoemark A. Simpson M.A. zur Lage P.I. de Castro S.C. Bartoloni L. Gallone G. Petridi S. Woollard W.J. et al.Mutations in ZMYND10, a gene essential for proper axonemal assembly of inner and outer dynein arms in humans and flies, cause primary ciliary dyskinesia.Am. J. Hum. Genet. 2013; 93: 346-356Abstract Full Text Full Text PDF PubMed Scopus (123) Google Scholar, 46Zariwala M.A. Gee H.Y. Kurkowiak M. Al-Mutairi D.A. Leigh M.W. Hurd T.W. Hjeij R. Dell S.D. Chaki M. Dougherty G.W. et al.ZMYND10 is mutated in primary ciliary dyskinesia and interacts with LRRC6.Am. J. Hum. Genet. 2013; 93: 336-345Abstract Full Text Full Text PDF PubMed Scopus (143) Google Scholar SPAG1 (MIM: 603395)47Knowles M.R. Ostrowski L.E. Loges N.T. Hurd T. Leigh M.W. Huang L. Wolf W.E. Carson J.L. Hazucha M.J. Yin W. et al.Mutations in SPAG1 cause primary ciliary dyskinesia associated with defective outer and inner dynein arms.Am. J. Hum. Genet. 2013; 93: 711-720Abstract Full Text Full Text PDF PubMed Scopus (107) Google Scholar and C21orf59 (MIM: 615494).28Austin-Tse C. Halbritter J. Zariwala M.A. Gilberti R.M. Gee H.Y. Hellman N. Pathak N. Liu Y. Panizzi J.R. Patel-King R.S. et al.Zebrafish ciliopathy screen plus human mutational analysis identifies C21orf59 and CCDC65 defects as causing primary ciliary dyskinesia.Am. J. Hum. Genet. 2013; 93: 672-686Abstract Full Text Full Text PDF PubMed Scopus (137) Google Scholar Three X-linked PCD variants have been reported so far: one caused by PIH1D3 (MIM: 300933) mutations48Paff T. Loges N.T. Aprea I. Wu K. Bakey Z. Haarman E.G. Daniels J.M.A. Sistermans E.A. Bogunovic N. Dougherty G.W. et al.Mutations in PIH1D3 cause X-linked primary ciliary dyskinesia with outer and inner dynein arm defects.Am. J. Hum. Genet. 2017; 100: 160-168Abstract Full Text Full Text PDF PubMed Scopus (100) Google Scholar, 49Olcese C. Patel M.P. Shoemark A. Kiviluoto S. Legendre M. Williams H.J. Vaughan C.K. Hayward J. Goldenberg A. Emes R.D. et al.UK10K Rare GroupX-linked primary ciliary dyskinesia due to mutations in the cytoplasmic axonemal dynein assembly factor PIH1D3.Nat. Commun. 2017; 8: 14279Crossref PubMed Scopus (96) Google Scholar resulting in the absence of ODA and IDA and two PCD variants caused by mutations in OFD1 (MIM: 311200) and RPGR (MIM: 312610), which are associated with syndromic cognitive dysfunction or retinal degeneration, respectively.50Budny B. Chen W. Omran H. Fliegauf M. Tzschach A. Wisniewska M. Jensen L.R. Raynaud M. Shoichet S.A. Badura M. et al.A novel X-linked recessive mental retardation syndrome comprising macrocephaly and ciliary dysfunction is allelic to oral-facial-digital type I syndrome.Hum. Genet. 2006; 120: 171-178Crossref PubMed Scopus (131) Google Scholar, 51Moore A. Escudier E. Roger G. Tamalet A. Pelosse B. Marlin S. Clément A. Geremek M. Delaisi B. Bridoux A.-M. et al.RPGR is mutated in patients with a complex X linked phenotype combining primary ciliary dyskinesia and retinitis pigmentosa.J. Med. Genet. 2006; 43: 326-333Crossref PubMed Scopus (188) Google Scholar Here, we describe an ODA/IDA defect caused by recessive loss-of-function mutations in the open-reading frame C11orf70. We performed targeted-exome sequencing in 15 PCD-affected individuals with combined ODA and IDA defects of unknown genetic cause. Signed and informed consent was obtained from individuals fulfilling diagnostic criteria of PCD12Lucas J.S. Barbato A. Collins S.A. Goutaki M. Behan L. Caudri D. Dell S. Eber E. Escudier E. Hirst R.A. et al.European Respiratory Society guidelines for the diagnosis of primary ciliary dyskinesia.Eur. Respir. J. 2017; 49: 49Crossref Scopus (354) Google Scholar and from family members according to protocols approved by the institutional ethics review board at the University of Muenster. Genomic DNA was isolated by standard methods directly from blood samples. Targeted-exome sequencing of genomic DNA was performed at the Cologne Center for Genomics. For enrichment, the NimbleGen SeqCap EZ Human Exome Library v2.0 was used. Enriched preparations were sequenced with the HiSeq2000 platform (Illumina) as paired-end 2 × 100 bp reads. The 30× coverage was in the range of 79%–86%. The genome sequence hg38 was used as a reference for mapping sequencing reads that passed quality filtering. Variants that were present in the dbSNP database, the 1000 Genomes Project polymorphism, and the Genome Aggregation Database (gnomAD) with a minor-allele frequency >0.01 were excluded. We focused on nonsynonymous mutations, splice-site substitutions, and indels following an autosomal-recessive inheritance pattern. In five PCD-affected individuals, we identified loss-of-function mutations in the chromosome 11 open-reading frame 70 (C11orf70) (GenBank: NM_032930.2). In OP-1416 II1 and OI-87, we identified a homozygous deletion of three thymine residues and an insertion of two cytosine residues (c.198_200delinsCC) resulting in a frameshift and predicted premature stop of translation (p.Phe67Profs∗10; Figure 1 and Figure S1). In OP-2249 II1 and OP-2334 II2, we identified a transition from C>T at position 361 (c.361C>T), and in OP-2190 a transversion from A>T at position 433 (c.433A>T), both resulting in stop codons (p.Arg121∗ and p.Arg145∗; Figure 1 and Figure S1). All individuals with loss-of-function mutations in C11orf70 show classical PCD symptoms (Table 1) such as chronic sinusitis, chronic otitis media, and chronic lower-respiratory-tract infections, as well as bronchiectasis in the middle lobe and mucus plugging (shown for OP-2334 II2 in Figure 1). Three of the five affected individuals had neonatal respiratory distress syndrome. In addition, one individual had situs inversus totalis, consistent with randomization of left/right body asymmetry (Figure 1). One individual underwent lobectomy of the middel lobe, because of recurrent exacerbations and frequent hemoptysis. The nasal nitric oxide production rate measured with the Niox Mino (Aerocrine) or EcoMedics CLD88 (EcoMedics) was low in all affected individuals (Table 1). High-speed video microscopy of ciliary motility in nasal respiratory epithelial cells showed completely immotile cilia (Videos S1, S2, and S3) in contrast to control cilia (Video S4). Ciliary-beat frequency and beating pattern was assessed with the SAVA system.52Sisson J.H. Stoner J.A. Ammons B.A. Wyatt T.A. All-digital image capture and whole-field analysis of ciliary beat frequency.J. Microsc. 2003; 211: 103-111Crossref PubMed Scopus (210) Google Scholar Respiratory epithelial cells were analyzed with a Zeiss AxioVert A1 microscope (40× and 63× phase-contrast objective lens) equipped with a Basler sc640-120fm monochrome high-speed video camera (Basler) set at 120 frames per second. The ciliary beating pattern was evaluated on slow-motion playbacks. Two individuals (OI-87 and OP-2334 II2) reported fertility problems. OI-87 gave birth to one child after in vitro fertilization. OP-2334 II2 had undergone fertility testing in the past and was diagnosed with moderate oligozoospermia (reduced number of sperm) and severe asthenozoospermia (immotility of sperm flagella) (Table S1). TEM analyses of respiratory cilia isolated from individuals with biallelic C11orf70 mutations and sperm flagella from OP-2334 II2 displayed both ODA and IDA defects in all cases (Figure 2). We analyzed sperm flagella from OP-2334 II2 by high-speed video microscopy, and in contrast to control cells (Video S5), sperm cells from OP-2334 II2 were completely immotile (Videos S6 and S7), consistent with a loss of dynein arms. TEM of human respiratory cilia and sperm flagella was performed as previously described.37Olbrich H. Schmidts M. Werner C. Onoufriadis A. Loges N.T. Raidt J. Banki N.F. Shoemark A. Burgoyne T. Al Turki S. et al.UK10K ConsortiumRecessive HYDIN mutations cause primary ciliary dyskinesia without randomization of left-right body asymmetry.Am. J. Hum. Genet. 2012; 91: 672-684Abstract Full Text Full Text PDF PubMed Scopus (209) Google ScholarTable 1Clinical Findings of PCD-Affected Individuals with Mutations in C11orf70SubjectSexOriginSInNo [nl/min]Neonatal RDSRecurrent PneumoniaRecurrent Respiratory InfectionsBronchiectas

Referência(s)